Advertisement

Documenta Ophthalmologica

, Volume 55, Issue 4, pp 323–340 | Cite as

Non-fusable stimuli and the role of binocular inhibition in normal and pathologic vision, especially strabismus

  • M. Fahle
Article

Abstract

Stimuli on corresponding points of both retinae that cannot be fused may cause binocular rivalry: the stimuli suppress each other alternately. This effect was used to study the influence of image sharpness upon binocular inhibition. Blurring an image means decreasing its contrast and attenuating its high spatial frequencies. Both factors diminish the time that a stimulus is perceived during rivalry. This fact has implications both for normal vision - as objects off the horopter are normally blurred - and for disturbed vision when the image of one or both eyes is (locally) deteriorated. In both cases, the binocular field of view can be combined from the ‘good’ parts of both eyes. Hence, the field of view may consist, in a piece-meal fashion, of parts stemming from the right or the left eye exclusively and others where both images are superimposed. We present evidence for the hypothesis that there is a common neural mechanism causing both binocular rivalry and functional amblyopia in anisometropia and strabismus. Consequences of the results on rivalry suppression for the pathophysiology and therapy of strabismic amblyopia are discussed.

Keywords

Retina Spatial Frequency Strabismus Amblyopia High Spatial Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Sind Reize auf korrespondierenden Bezirken beider Netzhäute nicht fusionierbar, so kann binokularer Wettstreit auftreten; die beiden Reize unterdrücken einander abwechselnd. Dieses Phänomen wurde benutzt, um den Einfluss der Abbildungsschärfe von Mustern auf die binokulare Hemmung zu untersuchen. Unscharfe Bilder weisen einen geringeren Kontrast und weniger hohe Ortsfrequenzen auf als scharfe Abbildungen. Beide Faktoren führen zu insgesamt kürzeren Dominanzzeiten unscharfer Muster während binokularen Wettstreits. Das hat Implikationen sowohl für das Normalsehen - da Gegenstände vor oder hinter dem Horopter in der Regel unscharf abgebildet werden - als auch für Erkrankungen, bei denen das Bild eines oder beider Augen (örtlich) gestört ist. In diesen Fällen setzt sich das bewusst wahrgenommene binokulare Gesichtsfeld aus den ‘guten’ Anteilen beider Augen zusammen. Mit anderen Worten, das Gesichtsfeld wird mosaikartig aus Anteilen zusammengesetzt, die bereichsweise entweder nur aus einem der Augen stammen oder aber durch die Kombination der Bilder beider Augen entstehen. Wir begründen unsere Hypothese, dass ein gemeinsamer neuronaler Mechanismus sowohl binokularen Wettstreit als auch die Hemmungsamblyopie (z.B. bei Anisometropie oder Schielen) verursachen könnte Konsequenzen der Wettstreit- Experimente für die Pathophysiologie und Therapie der Schielamblyopie werden diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe H (1978) Checkerboard pattern reversal VECP in response to monocular and binocular stimulation in normals and amblyopes. Ber Dtsch Ophthal Ges 75:522–527Google Scholar
  2. Abe H (1979) Suppression visuell evozierter kortikaler Potentiale (VECP) bei binokularer Darbietung von Kontrastreizen. Ber Dtsch Ophthal Ges 76:445–452Google Scholar
  3. Alexander LT and Bricker PD (1952) Figure-ground contrast and binocular rivalry. J Exp Psychol 44:452–454Google Scholar
  4. Apkarian PA and Tyler GW (1981) Binocular facilitation in the VEP of normal observers and strabismic amblyopes. Docum Ophthal Proc Ser 27:323–335Google Scholar
  5. Arden GB, Barnard WM and Mushin AS (1974) Visually evoked responses in amblyopia. Brit J Ophthal 58:183–192Google Scholar
  6. Aulhorn E, Eisert S and Harms H (1969) Die Beeinflussung der binokularen Helligkeitsempfindung durch die sensorische Prävalenz. Docum Ophthal 26:230–239Google Scholar
  7. Aulhorn E and Harms H (1956) Untersuchungen über das Wesen des Grenzkontrastes. Ber Dtsch Ophthal Ges 60:7–10Google Scholar
  8. Aust W (1966) Pleoptik und Orthoptik. Basel, KargerGoogle Scholar
  9. Baker FH, Grigg P and von Noorden GK (1974) Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res 66:185–208Google Scholar
  10. Bárány EH and Halldén U (1948) Phasic inhibition of the light reflex of the pupil during retinal rivalry. J Neurophysiol 11:25–30Google Scholar
  11. Barlow HB, Blakemore C and Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol (London) 193:327–342Google Scholar
  12. Bishop PO, Henry GH and Smith CJ (1971) Binocular interaction fields of single units in the cat striate cortex. J Physiol (London) 216:39–68Google Scholar
  13. Blake R (1977) Threshold conditions for binocular rivalry. J Exp Psychol 3:251–257.Google Scholar
  14. Blake R and Fox R (1974) Adaptation to invisible gratings and the site of binocular rivalry suppression. Nature 249:488–490Google Scholar
  15. Breese BB (1909) Binocular rivalry. Psychol Rev 16:410–415Google Scholar
  16. Brenner RL, Charles ST and Flynn JT (1969), Pupillary responses in rivalry and amblyopk. Arch Ophthal 82:23–29Google Scholar
  17. Burian HM and von Noorden GK (1980) Binocular vision and ocular motility. Theory and management of strabismus. St Louis, MosbyGoogle Scholar
  18. Burian HM and Watson CW (1952) Cerebral electric response to intermittent photic stimulation in amblyopia ex anopsia. Arch Ophthal 48:137–143Google Scholar
  19. Campbell FW and Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol (London) 197:551–566Google Scholar
  20. Catros A and Garrec A (1972) Unsere Erfahrungen mit der Penalisation in der Behandlung der funktionellen Amblyopie. Klin Mbl Augenheilk 161:156–159Google Scholar
  21. Cornsweet TN (1970) Visual perception. New York, Academic pressGoogle Scholar
  22. Cowan JD (1977) Some remarks on channel bandwidths for visual contrast detection. Neurose Res Program Bull 15/3, Cambridge, MIT Press, pp 492–517Google Scholar
  23. Crabus H and Stadler M (1973) Untersuchungen zur Lokalisierung von Wahrnehmungsprozessen: Figurale Nachwirkungen bei binokularen Wettstreit-Bedingungen. Perception 2:67–77Google Scholar
  24. Craik KJW (1940) Visual adaptation. Ph.D. Thesis, University of CambridgeGoogle Scholar
  25. Cynader M and Mitchell DE (1977) Monocular astigmatism effects on kitten visual cortex development. Nature 270:177–178Google Scholar
  26. Deller M and Brack B (1972) Ein neuer Weg zur Therapie der Schielamblyopie mit exzentrischer Fixation. Klin Mbl Augenheilk 160:694–699Google Scholar
  27. Dörrenhaus W (1975) Musterspezifischer visueller Wettstreit. Naturwissenschaften 62:578–579Google Scholar
  28. Donchin E and Cohen L (1970) Evoked potentials to stimuli presented to the suppressed eye in a binocular rivalry experiment. Vision Res 10:103–106Google Scholar
  29. Duke-Elder S (1973) System of Ophthalmology, Vol VI. Ocular motility and strabismus. London, KimptonGoogle Scholar
  30. Enroth-Cugell C and Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol (London) 187:517–552Google Scholar
  31. Fahle M (1981) Binokulares Einfachsehen. Thesis, University of TübingenGoogle Scholar
  32. Fahle M (1982a) Binocular rivalry: suppression depends on orientation and spatial frequency. Vision Res 22:787–800Google Scholar
  33. Fahle M (1982b) Cooperation between different spatial frequencies in binocular rivalry. Biol Cybernetics 44:27–29Google Scholar
  34. Fiorentini A, Maffei L, Pirchio M and Spinelli D (1978) An electrophysiological correlate of perceptual suppression in anisometropia. Vision Res 18:1617–1621Google Scholar
  35. Franceschetti AT and Burian HM (1971) Visually evoked responses in alternating strabismus. Amer J Ophthal 71:1292–1297Google Scholar
  36. Gellhorn E and Schöppe CH (1924) Quantitative Untersuchungen über den Wettstreit der Sehfelder II. Die Änderung des Wettstreites durch Umstimmung des Sehorgans. Pflügers Archiv 206:211–236Google Scholar
  37. Glezer VD, Tsherbach TA, Gauselman VE and Bondarko VM (1982) Spatio-temporal organization of receptive fields of the cat striate cortex. Biol Cybernetics 43:35 -49Google Scholar
  38. Goodman JW (1968) Introduction to Fourier-Optics. San Francisco, McGraw-HillGoogle Scholar
  39. Granit R (1947) Sensory mechanisms of the retina. London, Oxford University PressGoogle Scholar
  40. Guillery RW (1972) Binocular competition in the control of geniculate cell growth. J Comp Neurol 144:117–130Google Scholar
  41. Haase W (1974) Über die Indikation zur Penalisation bei der Behandlung des frühkindlichen Strabismus. Klin Mbl Augenheilk 165:714–724Google Scholar
  42. Haase W (1978) Optische Penalisation als therapeutisches Hilfsmittel beim frühkindlichen Strabismus. In: EB Streiff et al (eds) Advances in Ophthalmology, vol. 35. Basel, KargerGoogle Scholar
  43. Harms H (1937) Ort und Wesen der Bildhemmung bei Schielenden. Graefes Arch Ophthal 138:149–210Google Scholar
  44. Harms H (1964) Ort und Wesen der Bildhemmung bei Schielenden (Stellungnahme). Ber Dtsch Ophthal Ges 66:202–212Google Scholar
  45. Harms H and Aulhorn E (1955) Studien über den Grenzkontrast I: Ein neues Grenzphänomen. Graefes Arch Ophthal 157:3–23Google Scholar
  46. Hartline HK (1940) The receptive fields of optic nerve fibers. Amer J Physiol 130:690–699Google Scholar
  47. Hartline HK (1969) Visual receptors and retinal interaction. Science 164:270–278Google Scholar
  48. Hartline HK and Ratliff F (1957) Inhibitory interaction of receptor units in the eye of Limulus. J Gen Physiol 40:357–376Google Scholar
  49. Hebb DO (1949) The organization of behavior. New York, WileyGoogle Scholar
  50. Herzau V (1980) Untersuchungen über das binokulare Gesichtsfeld Schielender. Docum Ophthal 49:221–284Google Scholar
  51. Hubel DH and Wiesel TN (1959) Receptive fields of single neurones in the cat's striate cortex. J Physiol (London) 148:574–591Google Scholar
  52. Hubel DH and Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059Google Scholar
  53. Hubel DH, Wiesel TN and LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Phil Trans Roy Soc London B 278:377–409Google Scholar
  54. Ikeda H (1979) Physiological basis of amblyopia. Trends in Neuroscience 1:209–213Google Scholar
  55. Ikeda H and Tremain KE (1978) Amblyopia resulting from penalisation: neurophysiological studies of kittens reared with atropinisation of one or both eyes. Brit J Ophthal 62:21–28Google Scholar
  56. Ikeda H and Wright MJ (1972) Differential effects of refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res 12:1465–1476Google Scholar
  57. Kaplan IT and Metlay W (1964) Light intensity and binocular rivalry. J Exp Psychol 67:22–26Google Scholar
  58. Kaufman L (1963) On the spread of suppression and binocular rivalry. Vision Res 3:401–415.Google Scholar
  59. Kawasaki K, Hirose T, Jacobson JH and Cordella M (1970) Binocular fusion. Arch Ophthal 84:25–28Google Scholar
  60. Kitterle FL, Russell SK and Nixon H (1974) Pattern alternation: Effects of spatial frequency and orientation Percept. Psychophys. 16:543–546Google Scholar
  61. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68Google Scholar
  62. Lang J (1973) Mikrostrabismus, Stuttgart, EnkeGoogle Scholar
  63. Lansing RW (1964) Electroencephalographic correlates of binocular rivalry in man. Science 146:1325–1327Google Scholar
  64. Lawwill T and Biersdorf WR (1968) Binocular rivalry and visual evoked responses. Invest Ophthal 7:378–385Google Scholar
  65. Lawwill T, Cox WE, Tuttle D, Meur G and Burian HM (1973) Lateral inhibition and the VER in the central field of an amblyopic subject. Invest Ophthal 12:154–156Google Scholar
  66. Lennerstrand G (1978) Some observations on visual evoked responses (VER) to dichoptic stimulation. Acta Ophthal 56:638–647Google Scholar
  67. Levelt WJM (1966) The alternation process in binocular rivalry. Brit J Psychol 57:225–238Google Scholar
  68. Lindsley DF, Chow KL and Gollender M (1967) Dichoptic interactions of lateral geniculate neurons of cats to contralateral and ipsilateral eye stimulation. J Neurophysiol 30:628–644.Google Scholar
  69. Lorber M, Zuber BL and Stark L (1965) Suppression of the pupillary light reflex in binocular rivalry and saccadic suppression. Nature 208:558–560Google Scholar
  70. Lowe SW and Ogle KN (1966) Dynamics of the pupil during binocular rivalry. Arch Ophthal 75:395–403Google Scholar
  71. Mach E (1865) Über die Wirkung der räumlichen Vertheilung des Lichtreizes auf die Netzhaut. Sitzungsber Kaiserl Akad d Wiss. Wien, Mat-Nat Classe 52 II:303–322Google Scholar
  72. Mach E (1866a) Über den physiologischen Effect räumlich vertheilter Lichtreize. Sitzungsber Kaiserl Akad d Wiss. Wien, Mat-Nat Classe 54 II:131–144.Google Scholar
  73. Mach E (1866b) Über die physiologische Wirkung räumlich vertheilter Lichtreize. Sitzungsber Kaiserl Akad d Wiss. Wien, Mat-Nat Classe 54 II:393–408Google Scholar
  74. Mach E (1868) Über die physiologische Wirkung räumlich vertheilter Lichtreize. Sitzungsber Kaiserl Akad d Wiss. Wien, Mat-Nat Classe 57 II:11–19Google Scholar
  75. Mach E (1906) Über den Einfluss räumlich und zeitlich variierender Lichtreize auf die Gesichtswahrnehmung. Sitzungsber Kaiserl Akad d Wiss. Wien, Mat-Nat Classe 115 II:633–648Google Scholar
  76. MacKay DM (1968) Evoked potentials reflecting interocular and monocular suppression. Nature 217:81–83Google Scholar
  77. MacKay DM (1981) Strife over visual cortical function. Nature 289:117–118Google Scholar
  78. Maffei L and Fiorentini A (1976) Monocular deprivation in kittens impairs the spatial resolution of geniculate neurones. Nature 264:754–755Google Scholar
  79. Matsuhashi M and Oguchi Y (1981) Interocular suppression in visually evoked cortical potentials (VECP). Docum Ophthal Proc Ser 27:283–293Google Scholar
  80. Nawratzki J, Auerbach E and Rowe H (1966) Amblyopia ex anopsia. Amer J Ophthal 61:430–435Google Scholar
  81. O'Brien V (1958) Contour perception, illusion and reality. J Opt Soc Amer 48:112–119Google Scholar
  82. Palm G (1982) Neural assemblies. An alternative approach to artificial intelligence. Heidelberg, SpringerGoogle Scholar
  83. Palm G and Braitenberg V (1979) Tentative contributions of neuroanatomy to nerve net theories; In: R Trappl, GJ Klii and L Ricciardi (eds) Progress in cybernetics and systems research, vol. 3. New York, WileyGoogle Scholar
  84. Perry NW and Childers DG (1968) Cortical potentials in normal and amblyopic binocular vision. In: E. Schmöger (ed). Advances in electrophysiology and -pathology of the visual system. Leipzig, Edition Leipzig, pp 151–161Google Scholar
  85. Pfandl E (1958) A new way of preventing the development of abnormal retinal correspondence in concomitant strabism. Acta XVIII Consil Ophthal Belg 202Google Scholar
  86. Platzer H and Etschberger K (1972) Fouriertransformation zweidimensionaler Signale. Laser Elek-Optik 1:3–16Google Scholar
  87. Pouliquen P (1972) Zum Problem der Penalisation. Klin Mbl Augenheilk 161:130–139Google Scholar
  88. Quéré MA (1972) Die Methoden der Penalisation in der Behandlung des Strabismus convergens. Klin Mbl Augenheilk 161:140–155Google Scholar
  89. Ratliff F (1965) Mach Bands: Quantitative studies on neural networks in the retina. San Francisco, Holden-DayGoogle Scholar
  90. Rauschecker JP and Singer W (1981) The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. J Physiol (London) 310:215–239Google Scholar
  91. Richards W (1966) Attenuation of the pupil response during binocular rivalry. Vision Res 6:239–240Google Scholar
  92. Röhler R (1974) Biologische Kybernetik. Stuttgart, TeubnerGoogle Scholar
  93. Roelofs CO and Zeeman WPC (1919) Über den Wettstreit der Konturen. Graefes Arch Ophthal 99:79–104Google Scholar
  94. ]Rosenbach O (1903) Über monoculare Vorherrschaft beim binocularen Sehen. Münch Med Wschr 50:1290–1292Google Scholar
  95. Ruddock KH and Wigley E (1976) Inhibitory binocular interaction in human vision and a possible mechanism subserving stereoscopic fusion. Nature 260:604–606Google Scholar
  96. Schmielau F and Singer W (1977) The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus. Brain Res 120:354–361Google Scholar
  97. Schor CM (1977) Visual stimuli for strabismic suppression. Perception 6:583–593Google Scholar
  98. Shipley T (1969) The visually evoked occipitogram in strabismic amblyopia under directview ophthalmoscopy. J Pediat Ophthal 6:97–112Google Scholar
  99. Singer W (1970) Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res 18:165–170Google Scholar
  100. Singer W and Creutzfeldt OD (1970) Reciprocal lateral inhibition of on-and off-center neurones in the lateral geniculate body of the cat. Exp Brain Res 10:311–330Google Scholar
  101. Singer W, Rauschecker J and von Grünau M (1979) Squint affects striate cortex cells encoding horizontal image movements. Brain Res 170:182–186Google Scholar
  102. Sireteanu R, Fronius M and Singer W (1981) Binocular interaction in the peripheral visual field of humans with strabismic and anisometropic amblyopia. Vision Res 21:1065–1074Google Scholar
  103. Sireteanu R and Singer W (1980) The ‘vertical’ effect in human squint amblyopia. Exp Brain Res 40:354–357Google Scholar
  104. Sokol S and Bloom B (1973) Visually evoked cortical responses of amblyopes to a spatially alternating stimulus. Invest Ophthal 12:936–939Google Scholar
  105. Stärk N and Popp E (1975) Resultate der Penalisation. Klin Mbl Augenheilk 167:227–232Google Scholar
  106. Stent GS (1973) A physiological mechanism for Hebb's postulate of learning. Proc Nat Acad Sci USA 70:997–1001Google Scholar
  107. Stryker MP (1981) Late segregation of geniculate afferents to the cat's visual cortex after recovery from binocular impulse blockade. Soc for Neuroscience; 11th ann. Meeting, Los Angeles; Abstracts, p 842Google Scholar
  108. Suzuki H and Kato E (1966) Binocular interaction at cat's lateral geniculate body. J Neurophysiol 29:909–920Google Scholar
  109. Thomas J (1978) Binocular rivalry: The effects of orientation and pattern color arrangement. Percept. Psychophys. 23:360–362Google Scholar
  110. Trick GL, Dawson WW and Compton JR (1981) The binocular VER. The effect of interocular luminance differences. Docum Ophthal Proc Ser 27:295–304Google Scholar
  111. Tschermak-Seysenegg A von (1942) Einführung in die physiologische Optik. Berlin, SpringerGoogle Scholar
  112. Van Balen A Th M and Henkes HE (1962) Attention and amblyopia. Brit J Ophthal 46:12–20Google Scholar
  113. Wade NJ (1974) The effect of orientation in binocular contour rivalry of real images and after-images. Percept Psychophys 15:227–232Google Scholar
  114. Wanger P and Nilsson BY (1978) Visual evoked responses to pattern-reversal stimulation in patients with amblyopia and/or defective binocular functions. Acta Ophthal 56:617–627Google Scholar
  115. Westheimer G (1965) Spatial interaction in the human retina during scotopic vision. J Physiol (London) 181:881–894Google Scholar
  116. Westheimer G (1966) The Maxwellian view. Vision Res 6:669–682Google Scholar
  117. Westheimer G (1967) Spatial interaction in human cone vision. J Physiol (London) 190:139–154Google Scholar
  118. Westheimer G and McKee SP (1980) Stereoscopic acuity with defocused and spatially filtered retinal images. J Opt Soc Amer 70:772–778Google Scholar
  119. Whittle P, Bloor DC and Pocock S (1968) Some experiments on figural effects in binocular rivalry. Percept Psychophys 4:183–188Google Scholar
  120. Wiesel TN (1960) Receptive fields of ganglion cells in the cat's retina. J Physiol (London) 153:583–594Google Scholar
  121. Wiesel TN and Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017Google Scholar
  122. Wiesel TN and Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040Google Scholar
  123. Wilson HR and Giese SC (1977) Threshold visibility of frequency gradient patterns. Vision Res 17:1177–1190Google Scholar
  124. Wolfe JM (1982) When rivalry fails:the false fusion phenomenon and the temporal course of suppression. Perception 11:A17Google Scholar
  125. Yinon U, Jakobovitz L and Auerbach E (1974) The visual evoked response to stationary checkerboard patterns in children with strabismic amblyopia. Invest Ophthal 13:293–296Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • M. Fahle
    • 1
  1. 1.Dept. II: Pathophysiology of Vision and NeuroophthalmologyUniversity Eye ClinicTübingenF.R.G.

Personalised recommendations