Skip to main content
Log in

Pattern electroretinogram as a function of spatial frequency after retrobulbar optic neuritis

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Steady-state (8-Hz) pattern electroretinograms in response to counterphased sinusoidal gratings of variable spatial frequency (0.6–4.8 c/deg) were recorded in 17 patients who had had retrobulbar optic neuritis in one or both eyes (23 eyes with a clinical history of optic neuritis) and in 21 age-matched normal subjects. Amplitude and phase of the Fourier-analyzed pattern electroretinogram second harmonic were measured. The mean pattern electroretinogram amplitude of patients was significantly reduced compared with that of controls. Amplitude reductions were more marked at intermediate (1–1.4 c/deg) than at lower or higher spatial frequencies. Therefore, the average amplitude versus spatial frequency response function differed significantly in patients compared with controls, displaying a lowpass instead of a band-pass shape. No significant differences in the mean pattern electroretinogram phase were observed between groups at any spatial frequency. These results indicate spatial frequency-dependent abnormalities in the pattern electroretinogram amplitude after optic neuritis, suggesting a specific loss of retinal neurons sensitive to stimuli of intermediate spatial frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

SD:

standard deviation

SEM:

standard error of the mean

References

  1. Maffei L, Fiorentini A. Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 1981; 211: 953–5.

    Google Scholar 

  2. Maffei L, Fiorentini A. Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 1982; 48: 327–34.

    Google Scholar 

  3. Maffei L, Fiorentini A, Bisti S, Holländer H. Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 1985; 59: 423–5.

    Google Scholar 

  4. Fiorentini A, Maffei L, Pirchio M, Spinelli D, Porciatti V. The ERG in response to alternating gratings in patients with diseases of peripheral visual pathway. Invest Ophthalmol Vis Sci 1981; 21: 490–3.

    Google Scholar 

  5. Hess RF, Baker JR. Human pattern evoked electroretinogram. J Neurophysiol 1984; 51: 939–51.

    Google Scholar 

  6. Porciatti V. Non-linearities in the focal ERG evoked by pattern and uniform-field stimulation: Their variation in retinal and optic nerve dysfunction. Invest Ophthalmol Vis Sci 1987; 28: 1306–13.

    Google Scholar 

  7. Holopigian K, Snow J, Seiple W, Seigel I. Variability of the pattern electroretinogram. Doc Ophthalmol 1988; 70: 103–15.

    Google Scholar 

  8. Maffei L, Fiorentini A. Generator sources of the pattern ERG in man and animals. In: Cracco RQ, Bodis-Wollner I, eds. Frontiers of clinical neuroscience, Vol. 3. New York: Liss, 1986: 101–16.

    Google Scholar 

  9. Di Leo MAS, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV. Spatial frequencyselective losses with pattern electroretinogram in Type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia 1990; 75: 83–95.

    Google Scholar 

  10. Porciatti V, Falsini B, Brunori S, Colotto A, Moretti G. Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucoma. Doc Ophthalmol 1987; 65: 349–55.

    Google Scholar 

  11. Marx MS, Podos SM, Bodis-Wollner I, Lee P-Y, Wang R-F, Severin C. Signs of early damage in glaucomatous monkey eyes: Low spatial frequency losses in the pattern ERG and VEP. Exp Eye Res 1988; 46: 173–84.

    Google Scholar 

  12. Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 1989; 30: 897–907.

    Google Scholar 

  13. Hess RF, Plant GT. The psychophysical loss in optic neuritis: spatial and temporal aspects. In: Hess RF, Plant GT, eds. Optic neuritis. Cambridge: Cambridge University Press, 1986: 109–51.

    Google Scholar 

  14. Plant GT, Hess RF. The electrophysiological assessment of optic neuritis. In: Hess RF, Plant GT, eds. Optic neuritis. Cambridge: Cambridge University Press, 1986: 192–230.

    Google Scholar 

  15. Regan D, Silver R, Murray TJ. Visual acuity and contrast sensitivity in multiple sclerosishidden visual loss: An auxiliary diagnostic test. Brain 1977; 100: 563–79.

    Google Scholar 

  16. Fleishman JA, Beck RW, Linares OA, Klein GW. Deficits in visual function after resolution of optic neuritis. Ophthalmology 1987; 94: 1029–35.

    Google Scholar 

  17. Plant GT. Transient visually evoked potentials to sinusoidal gratings in optic neuritis. J Neurol Neurosurg Psychiatry 1983; 46: 1125–33.

    Google Scholar 

  18. Celesia CC, Kaufman D, Cone SB. Simultaneous recording of pattern electroretinography and visual evoked potentials in multiple sclerosis. Arch Neurol 1986; 43: 1247–52.

    Google Scholar 

  19. Poser CP, Paty DW, Scheinberg L, McDonald I, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtelotte WW. New diagnostic criteria for multiple sclerosis: Guidelines for research protocols. Ann Neurol 1983; 13: 227–31.

    Google Scholar 

  20. Fadda A, Falsini B, Neroni M, Porciatti V. Development of personal computer software for a visual electrophysiology laboratory. Comp Methods Prog Biomed 1989; 28: 45–50.

    Google Scholar 

  21. Porciatti V, Falsini B, Scalia G, Fadda A, Fontanesi G. The pattern electroretinogram by skin electrodes: Effect of spatial frequency and age. Doc Ophthalmol 1988; 70: 117–22.

    Google Scholar 

  22. Arden GB, Gaegan, Hogg CR. Clinical and experimental evidence that the pattern electroretinogram (PERG) is generated in more proximal retinal layers than the focal electroretinogram (FERG). Ann NY Acad Sci 1982; 388: 580–601.

    Google Scholar 

  23. Bobak P, Bodis-Wollner I, Harnois C, Maffei L, Mylin L, Podos S, Thornton J. Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 1983; 96: 72–83.

    Google Scholar 

  24. Serra G, Carreras M, Tugnoli V, Manca M, Cristofori MC. Pattern electroretinogram in multiple sclerosis. J Neurol Neurosurg Psychiatry 1984; 47: 879–83.

    Google Scholar 

  25. Persson HE, Wanger P. Pattern-reversal electroretinograms and visual evoked cortical potentials in multiple sclerosis. Br J Ophthalmol 1984; 68: 760–4.

    Google Scholar 

  26. Berninger TA, Heider W. Electrophysiology and perimetry in acute retrobulbar optic neuritis. Doc Ophthalmol 1989; 71: 293–305.

    Google Scholar 

  27. Berninger TA, Heider W. Pattern electroretinograms in optic neuritis during the acute stage and after remission. Graefe's Arch Clin Exp Ophthalmol 1990; 228: 410–4.

    Google Scholar 

  28. Porciatti V, von Berger GP. Retinal and cortical evoked potentials in response to alternating gratings in the diagnosis of optic nerve diseases. In: Nodar RH, Barber C, eds. Evoked potentials. Boston: Butterworth, 1984: 319–28.

    Google Scholar 

  29. Plant GT, Hess RF, Thomas JS. The pattern evoked electroretinogram in optic neuritis. A combined psychophysical and electrophysiological study. Brain 1986; 109: 469–89.

    Google Scholar 

  30. Falsini B, Tamburrelli C, Porciatti V, Anile C, Porrello G. Pattern electroretinograms and visual evoked potentials in benign intracranial hypertension with uncomplicated papilledema. Invest Ophthalmol Vis Sci 1991; 32(suppl): 949.

    Google Scholar 

  31. Falsini B, Bardocci A, Porciatti V, Bolzani R, Piccardi M. Macular dysfunction in multiple sclerosis revealed by steady-state flicker- and pattern-ERGs. Electroencephalogr Clin Neurophysiol. 1992; 82: 53–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falsini, B., Bardocci, A., Cermola, S. et al. Pattern electroretinogram as a function of spatial frequency after retrobulbar optic neuritis. Doc Ophthalmol 79, 325–336 (1992). https://doi.org/10.1007/BF00160947

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160947

Key words

Navigation