Vertical signal flow and oscillations in a three-layer model of the cortex

Abstract

A model of vertical signal flow across a layered cortical structure is presented and analyzed. Neurons communicate through spikes, which evoke an excitatory or inhibitory postsynaptic potential (spike response model). The layers incorporate two anatomical features - dendritic and axonal arborization patterns and distance-dependent time delays. The vertical signal flow through the network is discussed for various stimulus conditions using two different, but typical, axonal arborization patterns. We find stationary as well as oscillatory response, but the oscillatory response may be restricted to a single layer. Confronted with conflicting stimuli the network separates the patterns through phase-shifted oscillations. We also discuss two hypothetical animals, to be called “cat” and “mouse.” These have different axonal arborizations, which give rise to a different oscillatory response (if any) of the various layers.

This is a preview of subscription content, access via your institution.

References

  1. Anderson JC, Martin KAC, and Whitteridge D (1993) Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. Cerebral Cortex 3:412–420.

    Google Scholar 

  2. Braitenberg V (1986) Two views of the cerebral cortex. In: Palm G, and Aertsen A, eds. Brain Theory. Springer, Berlin, Heidelberg, New York. pp. 81–96.

    Google Scholar 

  3. Braitenberg V, and Schüz A (1991) Anatomy of the cortex. Springer, Berlin, Heidelberg, New York. ch. 28.

    Google Scholar 

  4. Burkhalter A (1989) Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections. J. Comp. Neurol. 279:171–186.

    Google Scholar 

  5. Cauller LJ, and Connors BW (1994) Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J. Neurosci. 14:751–762.

    Google Scholar 

  6. Creutzfeldt OD (1983) Cortex Cerebri. Springer Berlin, Heidelberg, New York.

    Google Scholar 

  7. Crick F, and Koch C (1995) Are we aware of neural activity in primary visual cortex? Nature 375:121–123.

    Google Scholar 

  8. Douglas RJ, and Martin KAC (1991) A functional microcircuit for cat visual cortex. J. Physiol. (London) 440:735–769.

    Google Scholar 

  9. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, and Reitboeck HJ (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern. 60:121–130.

    Google Scholar 

  10. Felleman DJ, and van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47.

    Google Scholar 

  11. Fuentes U (1993) Einfluβ der Schicht- und Arealstruktur auf die Informationsverarbeitung im Cortex. Diplomarbeit, Technische Universität München.

  12. Gerstner W, Ritz R, and van Hemmen JL (1993a) A biologically motivated and analytically soluble model of collective oscillations in the cortex: I. Theory of weak locking. Biol. Cybern. 68:363–374.

    Google Scholar 

  13. Gerstner W, Ritz R, and van Hemmen JL (1993b) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern. 69:503–515.

    Google Scholar 

  14. Ghose GM, and Freeman RD (1992) Oscillatory discharge in the visual system: Does it have a functional role? J. Neurophysiol. 68:1558–1574.

    Google Scholar 

  15. Gilbert CD (1993) Circuitry, architecture, and functional dynamics of visual cortex. Cerebral Cortex 3:373–386.

    Google Scholar 

  16. Gilbert CD, and Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3:1116–1133.

    Google Scholar 

  17. Gray CM, Engel AK, König P, and Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: Receptive field properties and feature dependence. Eur. J. Neurosci. 2 (1990):607–619.

    Google Scholar 

  18. Gray CM, König P, Engel AK, and Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337.

    Google Scholar 

  19. Gray CM, and Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86:1698–1702.

    Google Scholar 

  20. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79:2554–2558.

    Google Scholar 

  21. Hopfield JJ, Feinstein DI, and Palmer RG (1983) Unlearning has a stabilizing effect in collective memories. Nature 304:158–159.

    Google Scholar 

  22. Kandel ER, Schwartz JH, and Jessell TM (1991) Principles of neuroscience (3rd ed.). Prentice-Hall, London.

    Google Scholar 

  23. Koch C, and Crick F (1994) Some further ideas regarding the neuronal basis of awareness. In: Koch C, and Davies JL, eds. Large-scale neuronal theories of the brain. MIT Press, Cambridge, MA. pp. 93–109.

    Google Scholar 

  24. Kreiter AK, and Singer W (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur. J. Neurosci. 4:369–375.

    Google Scholar 

  25. Krone G, Mallot H, Palm G, and Schüz A (1986) Spatiotemporal receptive fields: a dynamical model derived from cortical architectonics. Proc. R. Soc. Lond., Ser. B 226:421–444.

    Google Scholar 

  26. Lund JS, Henry GH, MacQueen CL, and Harvey AR (1979) Anatomical organization of the primary visual cortex (Area 17) of the cat. A comparison with Area 17 of the macaque monkey. J. Comp. Neur. 184:599–618.

    Google Scholar 

  27. Nakajima S, Komatsu Y, and Toyama K (1988) Synaptic action of layer I fibers on cells in cat striate cortex. Brain Res. 457:176–180.

    Google Scholar 

  28. Patton P, Thomas E, and Wyatt RE (1992) A computational model of vertical signal propagation in the primary visual cortex. Biol. Cybern. 68:43–52.

    Google Scholar 

  29. Ritz R, Gerstner W, Fuentes U, and van Hemmen JL (1994) A biologically motivated and analytically soluble model of collective oscillations in the cortex: II. Application to binding and pattern segmentation. Biol. Cybern. 71:349–358.

    Google Scholar 

  30. Singer W (1994) Putative functions of temporal correlations in neocortical processing. In: Koch C, and Davies JL, eds. Large-scale neuronal theories of the brain. MIT Press, Cambridge, MA. pp. 201–237.

    Google Scholar 

  31. Thomas E, Patton P, and Wyatt RE (1991) A computational model of the vertical anatomical organization of primary visual cortex. Biol. Cybern. 65:189–202.

    Google Scholar 

  32. Tigges J, and Tigges M (1982) Principles of axonal collateralization of laminae II–III pyramids in Area 17 of squirrel monkey: A quantitative Golgi study. Neuroscience Letters 29:99–104.

    Google Scholar 

  33. Valverde F (1984) The organizing principles of the primary visual cortex in the monkey. In: Peters A, and Jones EG, eds. Cerebral Cortex (Vol. 3). Plenum Press, New York, London.

    Google Scholar 

  34. van Hemmen JL, Gerstner W, Herz AVM, Kühn R, Sulzer B, and Vaas M (1990) Encoding and decoding of patterns which are correlated in space and time. In: Dorffner G, ed. Konnektionismus in Artificial Intelligence und Kognitionsforschung, Springer, Berlin, Heidelberg, New York. pp. 153–162.

    Google Scholar 

  35. van Hemmen JL, Ioffe LB, Kühn R, and Vaas M (1990) Increasing the efficiency of a neural network through unlearning. Physica A 163:386–392.

    Google Scholar 

  36. von der Malsburg C (1981) The correlation theory of brain function. Internal Report 81–2, MPI für Biophysikalische Chemie, Göttingen. Reprinted in: Domany E, van Hemmen JL, and Schulten K, eds. (1994) Models of Neural Networks II. Springer, New York. ch. 2.

    Google Scholar 

  37. von der Malsburg C, and Schneider W (1986) A neural cocktail-party processor. Biol. Cybern. 54:29–40.

    Google Scholar 

  38. von Seelen W, Mallot HA, and Giannakopoulos F (1987) Characteristics of neural systems in the visual cortex. Biol. Cybern. 56:37–49.

    Google Scholar 

  39. Wang D, Buhmann J, and von der Malsburg C (1990) Pattern segmentation in associative memory. Neural Comp. 2:94–106.

    Google Scholar 

  40. Wimbauer S, Klemmer N, and van Hemmen JL (1994) Universality of unlearning. Neural Networks 7:261–270.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuentes, U., Ritz, R., Gerstner, W. et al. Vertical signal flow and oscillations in a three-layer model of the cortex. J Comput Neurosci 3, 125–136 (1996). https://doi.org/10.1007/BF00160808

Download citation

Keywords

  • neural modeling
  • laminar structure
  • collective oscillations