Skip to main content
Log in

Stimulus investigative range in the perimetry of retinitis pigmentosa: some preliminary findings

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The manipulation of perimetric stimulus parameters over a given dynamic range has been reported to provide diagnostic information additional to that of changes in differential sensitivity. Preliminary studies (Flanagan et al., 1984a) have indicated that the perimetric response in retinitis pigmentosa behaves atypically over a range of stimulus combinations and strategies. The current study investigated the perimetric response of 17 retinitis pigmentosa patients of various genetic types over a range of stimulus parameters (target size, presentation time and background luminance) and test strategies (kinetic and threshold static) using the Octopus automated perimeter, the Goldmann and Tubinger bowl perimeters and the Dicon Autoperimeter 3000. Statokinetic dissociation was found to be present with large target sizes at 10 asb and 31.5 asb bowl luminances. Some patients demonstrated enhanced sensitivity to shorter stimulus presentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander KR and Fishman GA (1985) Rod-cone interaction in flicker perimetry: evidence for a distal retinal locus. Docum Ophthal 60:3–36

    Google Scholar 

  • Barbur JL (1979) Visual periphery. In: Clare JN and Sinclair MA (eds) Search and the human observer. London, Taylor and Francis, pp 100–113

    Google Scholar 

  • Barnes DA, Wild JM, Flanagan JG, Good PA and Crews SJ (1985) Manipulation of sensitivity in visual field investigation. Docum Ophthal 59:301–308

    Google Scholar 

  • Bebie H, Fankhauser F and Spahr J (1976) Static perimetry, accuracy and fluctuations. Acta Ophthal 54:339–348

    Google Scholar 

  • Berry V, Drance SM, Wiggins RL, Hughes A and Winsby B (1966) An evaluation of differences between two observers plotting and measuring visual fields. Can J Ophthal 1:297–300

    Google Scholar 

  • Berson EL (1971) Light deprivation for early retinitis pigmentosa. A hypothesis. Arch Ophthal 85:521–529

    Google Scholar 

  • Berson EL (1973) Experimental and therapeutic aspects of photic damage to the retina. Invest Ophthal 12:35–44

    Google Scholar 

  • Cleland BG and Levick WR (1974) Brisk and sluggish concentrically organised ganglion cells in the cat's retina. J Physiol (London) 240:421–456

    Google Scholar 

  • Cohen AI (1969) Rods and cones and the problem of visual excitation. In: Straatsma BR, Hall MD, Allen RA and Crescitelli F (eds) The Retina. Berkeley, University of California Press, pp 31–62

    Google Scholar 

  • Dowling JE and Sidman RL (1962)Inherited retinal dystrophy in rats. J Cell Biol 14: 73–109

    Google Scholar 

  • Dubois-Poulsen A (1952) Le champs visuel topographie, normale et pathologique de ses sensibilites. Paris, Masson

    Google Scholar 

  • Dubois-Poulsen A and Magis CI (1957) La notion de sommation spatiale en physiopathologie oculaire. Mod Probl Ophthal 1:218–238

    Google Scholar 

  • Enroth-Cugell C and Robson JG (1966) The contrast sensitivity of retinal ganglion cells in the cat. J Physiol (London) 187:517–552

    Google Scholar 

  • Fankhauser F (1979) Problems related to the design of automatic perimeters. Docum Ophthal 47:89–138

    Google Scholar 

  • Fankhauser F and Haeberlin H (1980) Dynamic range and stray light. An estimate of the falsifying effects of stray light in the perimetry. Docum Ophthal 50:143–167

    Google Scholar 

  • Fankhauser F and Schmidt Th (1960) Die optimalen Bedingungen für die Untersuchung der räumlichen Summation mit stehender Reizmark nach der Methode der quantitativen Lichtsinnperimetrie. Ophthalmologica (Basel) 139:409–423

    Google Scholar 

  • Flammer J, Drance SM, Fankhauser F and Augustiny L (1984) Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation. Arch Ophthal 102:876–879

    Google Scholar 

  • Flanagan JG, Wild JM, Barnes DA, Gilmartin BA, Good PA and Crews SJ (1984a) The qualitative comparative analysis of the visual field using computer assisted, semiautomated and manual instrumentation III. Clinical Analysis. Docum Ophthal 58: 341–350

    Google Scholar 

  • Flanagan JG, Wild JM, Barnes DA, Gilmartin BA, Good PA and Crews SJ (1984b) The qualitative comparitive analysis of the visual field using computer assisted, semiautomated and manual instrumentation. I. Scoring system. Docum Ophthal 58:319–324

    Google Scholar 

  • Gougnard L (1961) Études des sommations spatiales chez le sujet normal par la perimetrie statique. Ophthalmologica (Basel) 142:469–486

    Google Scholar 

  • Greve EL (1973) Single and multiple stimulus static perimetry in glaucoma, the two phases of visual field examination. Docum Ophthal 36:1–335

    Google Scholar 

  • Greve EL, Bos PJM and Bakker D (1976) Photopic and mesopic central static perimetry in maculopathies and central neuropathies. Docum Ophthal Proc Ser 14:243–250

    Google Scholar 

  • Heijl A (1985) The Humphrey Field Analyser, construction and concepts. Docum Ophthal Proc Ser 42:77–78

    Google Scholar 

  • Ikeda H and Wright MJ (1972) Differential effects of refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res 12:1465–1476

    Google Scholar 

  • Kulikowski JJ and Tolhurst DJ (1973) Psychophysical evidence for sustained and transient detectors in human vision. J Physiol (London) 232:149–162

    Google Scholar 

  • Lennie P (1980) Parallel visual pathways. A review. Vision Res 20:561–594

    Google Scholar 

  • Lyness AL, Ernst W, Quinlan MP, Clover GM, Arden GB, Carter RM, Bird AC and Parker JA (1985) A clinical, psychophysical and electroretinographic survey of patients with autosomal dominant retinitis pigmentosa. Brit J Ophthal 69:326–339

    Google Scholar 

  • McColgin FH (1960) Movement thresholds in peripheral vision. J Opt Soc Amer 50: 774–779

    Google Scholar 

  • Monasterio FM de (1978) Properties of concentrically organised X and Y ganglion cells of the Macaque retina. J Neurophysiol 41:1394–1417

    Google Scholar 

  • Noell WK, Delmelle MC and Albrecht R (1971) Vitamin A deficiency effect on the retina. Dependence on light. Science 172:72–76

    Google Scholar 

  • Paige GD (1985) Effect of increased background luminance on static threshold perimetry. ARVO. Invest Ophthal Vis Sci 26(suppl):226

    Google Scholar 

  • Raviola E and Gilula NB (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J Cell Biol 65:192–222

    Google Scholar 

  • Riddoch G (1917) Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40:15–57

    Google Scholar 

  • Ross DF, Fishman GA, Gilbert D and Anderson RJ (1984) Variability of visual field measurement in normal subjects and patients with retinitis pigmentosa. Arch Ophthal 102:1004–1010

    Google Scholar 

  • Safran A and Glaser JS (1980) Statokinetic dissociation in lesions of the anterior visual pathways. A reappraisal of the Riddoch phenomenon. Arch Ophthal 98:291–295

    Google Scholar 

  • Sloan LL (1961) Area and luminance of test objects as variables in examination of the visual field by projection perimetry. Vision Res 1:121–138

    Google Scholar 

  • Sloan LL and Brown DJ (1962) Area and luminance of test objects as variables in projection perimetry. Clinical studies of photometric dysharmony. Vision Res 2:527–541

    Google Scholar 

  • Szamier RB, Berson EL, Klein R and Meyers S (1979) Sex-linked retinitis pigmentosa: ultrastructure of photoreceptors and pigment epithelium. Invest Ophthal Vis Sci 18:145–160

    Google Scholar 

  • Szamier RB (1981) Ultrastructure of the pre-retinal membrane in retinitis pigmentosa. Invest Ophthal Vis Sci 21:227–236

    Google Scholar 

  • Tolhurst DJ (1973) Separate channels for the analysis of the shape and the movement of a moving visual stimulus. J Physiol (London) 231:385–402

    Google Scholar 

  • Weale RA and Wheeler C (1977) A note on stray light in the Tubinger perimeter. Brit J Ophthal 61:133–134

    Google Scholar 

  • Wilson ME (1967) Spatial and temporal summation in impaired regions of the visual field. J Physiol (London) 189:189–208

    Google Scholar 

  • Wilson ME (1968) The detection of light scattered from stimuli in impaired regions of the visual field. J Neurol Neurosurg Psych 31:509–513

    Google Scholar 

  • Zappia RJ, Enoch JM, Stamper R, Winkelman JZ and Gay AJ (1971) The Riddoch phenomenon revealed in non-occipital lobe lesions. Brit J Ophthal 55:416–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J.M., Wild, J.M., Good, P.A. et al. Stimulus investigative range in the perimetry of retinitis pigmentosa: some preliminary findings. Doc Ophthalmol 63, 287–302 (1986). https://doi.org/10.1007/BF00160762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160762

Key words

Navigation