Skip to main content
Log in

Estimation of growth and survival in size-structured cohort data: an application to larval striped bass (Morone saxatilis)

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a method for estimating growth and mortality rates in size-structured population models. The methods are based on least-square fits to data using approximate models (using spline approximations) for the underlying partial differential equation population model. In a series of numerical tests, we compare our approach to an existing method (due to Hackney and Webb). As an example, we apply our techniques to experimental data from larval striped bass field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botsford, L. W.: Modeling, Stability and Optimal Harvest of Aquatic Productive Systems. Ph.D thesis, University of California, Davis 1978

    Google Scholar 

  2. Banks, H. T., Botsford, L. W., Kappel, F., Wang, C.: Modeling and estimation in size structured population models. In: Hallam, T. G., Gross, L. J., Levin, S. A. (eds.) Math. Ecology, pp. 521–541. Singapore: World Scientific 1988

    Google Scholar 

  3. Banks, H. T., Fitzpatrick, B. G.: Inverse problems for distributed systems: statistical test and ANOVA, LCDS/CCS Rep. no. 88–16, Brown University; Proc. Intl. Symp. on Math. Approaches to Environmental and Ecological Problems. (Lect. Notes Biomath., vol. 81, pp. 262–273). Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  4. Banks, H. T., Fitzpatrick, B. G.: Statistical methods for model comparison in parameter estimation problems for distributed systems. CAMS Rep. no. 89–4, University So. California; J. Math. Biol. 28 (1980), 501–527

    Google Scholar 

  5. Banks, H. T., Fitzpatrick, B. G.: Estimation of growth rate distributions in size structured population models. Quart. Appl. Math. 49 (1991), 215–235

    Google Scholar 

  6. Banks, H. T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Boston: Birkhäuser 1989

    Google Scholar 

  7. Banks, H. T., Kareiva, P., Murphy, K. A.: Parameter estimation techniques and redistribution models of species interactions: a predator-prey example. Oceologia 74, 356–362 (1987)

    Google Scholar 

  8. Banks, H. T., Murphy, K.: Quantitative modeling of growth and dispersal in population models, LCDS Report no. 86–4, Brown University; Proceedings Intl. Symp. on Math. Biol. (Lect. Notes Biomath., vol. 71, pp. 89–109) Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  9. Banks, H. T., Reich, S., Rosen, I. G.: An approximation theory for the identification of nonlinear distributed parameter systems. ICASE Rep. no. 88–26, NASA Langley Res. Ctr.; SIAM J. Control and Optimization 28 (1990), 552–569

    Google Scholar 

  10. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. New York: Wiley 1962

    Google Scholar 

  11. DeAngelis, D. L., Cox, D. K., Coutant, C. C.: Cannibalism and size dispersal in young-of-the-year largemouth bass: experiment and modeling. Ecologia Modeling 8, 133–148 (1980)

    Google Scholar 

  12. DeAngelis, D. L., Coutant, C. C.: Growth rates and size distributions of first-year smallmouth bass populations: some conclusions from experiments and a model. Trans. Am. Fish. Soc. 108, 137–141 (1979)

    Google Scholar 

  13. DeAngelis, D. L., Coutant, C. C.: Genesis of bimodal size distributions, in species cohorts. Trans. Am. Fish. Soc. 111, 384–388 (1982)

    Google Scholar 

  14. DeAngelis, D. L., Huston, M. A.: Effects of growth rates in models of size distribution formation in plants and animals. Ecologia Modeling 36, 119–137 (1987)

    Google Scholar 

  15. DeAngelis, D. L., Hackney, P. A., Webb, J. C.: A partial differential equation model of changing sizes and numbers in a cohort of juvenile fish. Environ. Biol. Fish 5, 261–266 (1980)

    Google Scholar 

  16. DeAngelis, D. L., Mattice, J. S.: Implications of a partial differential equation cohort model. Math. Biosci. 47, 271–285 (1979)

    Google Scholar 

  17. Goel, N. S., Richter-Dyn, N.: Stochastic Models in Biology. New York: Academic Press 1974

    Google Scholar 

  18. Hara, T.: Dynamics of size structure in plant populations. Trends Ecol. Evol. 3, 129–133 (1988)

    Google Scholar 

  19. Huston, M. A., DeAngelis, D. L.: Size bimodality in monospecific populations: a critical review of potential mechanism. Am. Nat. (1988)

  20. Hackney, P. A., Webb, J. C.: A method for determining growth and mortality rates of ichthyoplankton. In: Jenson, L. D. (ed.) Proceedings Fourth National Workshop on Entrainment and Impringement, pp. 115–124. Melvill, N.Y.: Ecological Analysts Inc. 1978

    Google Scholar 

  21. Jones, R.: Assessing the effects of changes in exploitation pattern using length composition data (with notes on VPA and cohort analysis). FAO Fish. Tech. Pap. 256, 118p. (1984)

  22. MacDonald, P. D. M., Pitcher, T. J.: Age-group from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36, 987–1001 (1979)

    Google Scholar 

  23. Pauly, D., David, N.: A BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforsch. 28, 205–211 (1981)

    Google Scholar 

  24. Schnute, J., Fourmier, D.: A new approach to length-frequency analysis: growth structure. Can. J. Fish. Aquat. Sci. 37, 1337–1351 (1980)

    Google Scholar 

  25. Sinko, J. W., Streifer, W.: A new model for age-size structure for a population. Ecology 48, 910–918 (1967)

    Google Scholar 

  26. Takada, T., Iwasa, Y.: Size distribution dynamics of plants with interaction by shading. Ecol. Model. 33, 173–184 (1986)

    Google Scholar 

  27. Van Sickle, J.: Analysis of a distributed-parameter population model based on physiological age. J. Theor. Biol. 64, 571–586 (1977)

    Google Scholar 

  28. Weiss, G. H.: Equations for the age structure of growing population. Bull. Math. Biophys. 30, 427–435 (1968)

    Google Scholar 

  29. Wismer, D. A., DeAngelis, D. L., Shuter, B. J.: An empirical model of size distributions of smallmouth bass. Trans. Am. Fish. Soc. 114, 737–742 (1985)

    Google Scholar 

  30. Wloka, J.: Partial Differential Equations. Cambridge: Cambridge University Press 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part under grants at Brown University from the National Science Foundation: UINT-8521208, NSFDMS-8818530 (H.T.B., F.K. and CW.); from the Air Force Office of Scientific Research: AFOSR F49620-86-C-0111 (H.T.B., C.W.); and at University of California, Davis from the Alford P. Sloan Foundation (L.W.B.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks, H.T., Botsford, L.W., Kappel, F. et al. Estimation of growth and survival in size-structured cohort data: an application to larval striped bass (Morone saxatilis). J. Math. Biol. 30, 125–150 (1991). https://doi.org/10.1007/BF00160331

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160331

Key words

Navigation