Skip to main content
Log in

Fundulus heteroclitus vitellogenin: The deduced primary structure of a piscine precursor to noncrystalline, liquid-phase yolk protein

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have cloned and sequenced a cDNA encoding a vitellogenin (Vtg) from the mummichog, Fundulus heteroclitus, an estuarine teleost. We constructed a liver cDNA library against RNA from estrogen-treated male mummichogs. Five overlapping cDNA clones totalling 5,197 by were isolated through a combination of degenerate oligonucleotide probing of the library and PCR. The cDNA sequence contains a 5,112 by open reading frame. The predicted primary structure of the deduced 1,704-amino-acid protein is 30–40% identical to other documented chordate Vtgs, establishing this Vtg as a member of the ancient Vtg gene family. Of the previously reported chordate Vtg sequences (Xenopus laevis, Gallus domesticus, Ichthyomyzon unicuspis, and Acipenser transmontanus), all four act as precursor proteins to a yolk which is eventually rendered insoluble under physiological conditions, either as crystalline platelets or as noncrystalline granules. The yolk of F. heteroclitus, on the other hand, remains in a soluble state throughout oocyte growth. The putative F. heteroclitus Vtg contains a polyserine region with a relative serine composition that is 10–20% higher than that observed for the other Vtgs. The trinucleotide repeats encoding the characteristic polyserine tracts of the phosvitin region follow a previously reported trend: TCX codons on the 5′ end and AGY codons toward the 3′ end. Whether the difference in Vtg primary structure between F. heteroclitus and that of other chordates is responsible for the differences in yolk structure remains to be elucidated. As the first complete teleost Vtg to be reported, these data will aid in designing nucleotide and immunological probes for detecting Vtg as a reproductive status indicator in F. heteroclitus and other piscine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGY:

AG(T or C)

TCX:

TC(AGC or T)

Lv:

lipovitellin

Pv:

phosvitin

Vtg:

vitellogenin

References

  • Arnberg A, Meijlink FCPW, Mulder J, van Bruggen EFJ, Gruber M, AB G (1981) Isolation and characterization of genomic clones covering the chicken vitellogenin gene. Nucleic Acids Res 9:3271–3286

    Google Scholar 

  • Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Nat Acad Sci USA 69:1408–1412

    Google Scholar 

  • Baker ME (1988a) Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochem J 256:1059–1063

    Google Scholar 

  • Baker ME (1988b) Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase? Biochem J 255:1057–1060

    Google Scholar 

  • Balinsky BI (1965) An introduction to embryology, second edition. WB Saunders, Philadelphia, p 137

    Google Scholar 

  • Banaszak LJ, Sbarrock W, Timmins P (1991) Structure and function of a lipoprotein: lipovitellin. Ann Rev Biophys Chem 20:221–246

    Google Scholar 

  • Beer KE (1981) Embryonic and larval development of white sturgeon (Acipenser transmontanus). MS thesis, University of California, Davis

    Google Scholar 

  • Blumenthal T, Squire M, Kirtland S, Cane J, Donegan M, Speith J, Sbarrock W (1984) Cloning of a yolk protein gene family from Caenorhabditis elegans. J Mol Biol 174:1–18

    Google Scholar 

  • Bownes M (1992) Why is there sequence similarity between insect yolk proteins and vertebrate lipases? J Lipid Res 33:777–790

    Google Scholar 

  • Byrne BM (1989) Phosvitin, an independent domain in vitellogenin genes. PhD dissertation, University of Groningen, The Netherlands

    Google Scholar 

  • Byrne BM, van het Schip F, van de Klundert JAM, Arnberg AC, Gruber M, AB G (1984) Amino acid sequence of phosvitin derived from the nucleotide sequence of part of the chicken vitellogenin gene. Biochemistry 23:4275–4279

    Google Scholar 

  • Byrne BM, de Jong H, Fouchier RAM, Williams DL, Gruber M, AB G (1989a) Rudimentary phosvitin domain in a minor chicken vitellogenin gene. Biochemistry 28:2572–2577

    Google Scholar 

  • Byrne BM, Gruber M, AB G (1989b) The evolution of egg yolk proteins. Prog Biophys Mol Biol 53:33–69

    Google Scholar 

  • Caskey CT, Pizzuti A, Fu Y-H, Fenwick RG, Nelson DL (1992) Triplet repeat mutations in human disease. Science 256:784–789

    Google Scholar 

  • Chen J-S, Cho W-L, Raikhel AS (1994) Analysis of mosquito vitellogenin cDNA, similarity with vertebrate phosvitins and arthropod serum proteins. J Mol Biol 237:641–647

    Google Scholar 

  • Clark RC (1973) Amino acid sequence of a cyanogen bromide cleavage peptide from hens egg phosvitin. Biochim Biophys Acta 310:174–187

    Google Scholar 

  • Conte FS, Doroshov SI, Lutes PB, Strange EM (1988) Hatchery manual for the white sturgeon. Publication 3322, The Regents of the University of California Division of Agriculture and Natural Resources, Oakland, CA, pp 15–23

    Google Scholar 

  • Cozens PJ, Cato AC, Jost JP (1980) Characterization of cloned complementary DNA covering more than 6000 nucleotides (97%) of avian vitellogenin mRNA. Ent J Biochem 112:443–450

    Google Scholar 

  • Denhardt DT (1966) A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646

    Google Scholar 

  • Ding JL, Ho B, Valotaire Y, LeGuellec K, Lim EH, Tay SP, Lam TJ (1990) Cloning, characterization and expression of vitellogenin gene of Oreochromis aureus (Teleostei, Cichlidae). Biochem Int 20:843–852

    Google Scholar 

  • Flickinger RA (1960) The relation of phosphoprotein phosphatase activity to yolk platelet utilisation in the amphibian embryo. J Exp Zool 131:307–332

    Google Scholar 

  • Flickinger RA, Rounds DE (1956) The maternal synthesis of egg yolk proteins as demonstrated by isotopic and serological means. Biochim Biophys Acta 22:38–42

    Google Scholar 

  • Follett BK, Redshaw MR (1968) The effects of oestrogen and gonadotrophins on lipid and protein metabolism in Xenopus laevis Daudin. J Endocrinol 40:439–456

    Google Scholar 

  • Folmar LC, Denslow ND, Wallace RA, LaFleur GJ, Bonomelli S, Sullivan CV (1994) A highly conserved N-terminal sequence for teleost vitellogenin with potential value to the biochemistry, molecular biology and pathology of vitellogenesis. J Fish Biol (in press)

  • Gerber-Huber S, Nardelli D, Haefliger J-A, Cooper DN, Givel F, Germond J-E, Engel J, Green M, Wahli W (1987) Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of a Xenopus vitellogenin gene. Nucleic Acids Res 15:4737–4760

    Google Scholar 

  • Germond JE, Walker P, ten Heggeler B, Brown-Luedi M, de Bony E, Wahli W (1984) Evolution of vitellogenin genes: comparative analysis of the nucleotide sequences downstream of the transcription initiation site off our Xenopus laevis and one chicken gene. Nucleic Acids Res 12:8595–8609

    Google Scholar 

  • Greeley MS Jr, Calder DR, Wallace RA (1986) Changes in teleost yolk proteins during oocyte maturation: correlation of yolk proteolysis with oocyte hydration. Comp Biochem Physiol 84B:1–9

    Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    Google Scholar 

  • Hopp TK, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78: 3824–3828

    Google Scholar 

  • Hovemann B, Galler R, Walldorf U, Kupper H, Bautz EK (1981) Vitellogenin in Drosophila melanogaster: sequence of the yolk protein I gene and its flanking regions. Nucleic Acids Res 9:4721–4734

    Google Scholar 

  • Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–983

    Google Scholar 

  • Janin J (1979) Surface and inside volumes in globular proteins. Nature 277:491–492

    Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates, vol 1. Academic Press, New York, pp 439–446

    Google Scholar 

  • Kanungo J, Perrino TR, Wallace RA (1990) Oogenesis in Fundulus heteroclitus. VI. Establishment and verification of conditions for vitellogenin incorporation by oocytes in vitro. J Exp Zool 25:313–321

    Google Scholar 

  • Karasaki S (1963a) Studies on amphibian yolk. 1. The ultrastructure of the yolk platelet. J Cell Biol 18:135–151

    Google Scholar 

  • Karasaki S (1963b) Studies on amphibian yolk. 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J Ultrastruct Res 9:225–247

    Google Scholar 

  • Karasaki S (1967) An electron microscope study on the crystalline structure of the yolk platelets of the lamprey egg. J Ultrastruct Res 18:377–390

    Google Scholar 

  • Kunkel JG, Nordin JH (1985) Yolk proteins. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York, pp 83–111

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Google Scholar 

  • Lange RH (1981) Are yolk phosvitins carriers for specific cations? Comparative microanalysis in vertebrate yolk platelets. Z Naturforsch 36:686–687

    Google Scholar 

  • Lange RH (1985) The vertebrate yolk-platelet crystal: comparative analysis of an in vivo crystalline aggregate. Int Rev Cytol 87:133–181

    Google Scholar 

  • Lange RH, Kilarski W (1986) Similarity in yolk-platelet structure of an ancient bony fish (Acipenser) and an ancient reptile (Sphenodon). Tissue Cell 1:117–124

    Google Scholar 

  • LeGuellec K, Lawless K, Valotaire Y, Kress M, Tenniswood M (1988) Vitellogenin gene expression in male rainbow trout (Salmo gairdneri). Gen Comp Endocrinol 71:359–371

    Google Scholar 

  • Løvtrup S (1977) The phylogeny of Vertebrata. John Wiley and Sons, London, p 250

    Google Scholar 

  • MacDonald RJ, Swift GH, Przybyla AE, Chirgwin JM (1987) Isolation of RNA using guanidinium salts. Methods Enzymol 152:219–227

    Google Scholar 

  • Mano Y, Lipmann F (1966) Enzymatic phosphorylation of fish phosvitin. J Biol Chem 241:3834–3837

    Google Scholar 

  • McMaster GK, Carmichael GG (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • Mecham DK, Olcott HS (1949) Phosvitin, the principal phosphoprotein of egg yolk. J Am Chem Soc 71:3670–3679

    Google Scholar 

  • Munday KA, Ansari AQ, Oldroyd D, Akhtar M (1968) Oestrogen-induced calcium-binding protein in Xenopus laevis. Biochim Biophys Acta 166:748–751

    Google Scholar 

  • Murakami M, Iuchi I, Yamagami K (1990) Yolk phosphoprotein metabolism during early development of the fish, Oryzias latipes. Dev Growth Differ 32:619–627

    Google Scholar 

  • Nardelli D, Gerber-Huber S, van het Schip F, Gruber M, AB G, Wahli W (1987) Vertebrate and nematode genes coding for yolk proteins are derived from a common ancestor. Biochemistry 26:6397–6402

    Google Scholar 

  • Nelson JS (1984) Fishes of the world. Wiley-Interscience, New York, p 87

    Google Scholar 

  • Nelson G (1989) Phylogeny of major fish groups. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, New York, p 330

    Google Scholar 

  • Olin T, von der Decken A (1989) Yolk proteins in salmon (Salmo salar) oocytes, eyed eggs, and alevins differing in viability. Can J Zool 68:895–900

    Google Scholar 

  • Opresko LK, Wiley HS (1987) Receptor-mediated endocytosis in Xenopus oocytes. I. Characterization of the vitellogenin receptor system. J Biol Chem 262:4109–4115

    Google Scholar 

  • Opresko LK, Wiley HS, Wallace RA (1980) Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand. Cell 22:47–57

    Google Scholar 

  • Pan ML, Bell WJ, Telfer WH (1969) Vitellogenic blood protein synthesis by insect fat body. Science 165:393–394

    Google Scholar 

  • Raag R, Appelt K, Xuong, N-H, Banaszak L (1988) Structure of the lamprey yolk lipid-protein complex lipovitellin-phosvitin at 2.8 Å resolution. J Mol Biol 200:553–569

    Google Scholar 

  • Rabinowitz (1962) Protein kinases. In; Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, vol 6. Academic Press, New York, pp 119–131

    Google Scholar 

  • Raff RA, Field KG, Olsen GJ, Giovannoni SJ, Lane DJ, Ghiselin MT, Pace NR, Raff EC (1989) Metazoan phylogeny based on analysis of 18S ribosomal RNA. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, New York, pp 247–260

    Google Scholar 

  • Rina M, Savakis C (1981) A cluster of vitellogenin genes in the mediterranean fruit fly Ceratifs capitata: sequence and structural conservation in dipteran yolk proteins and their genes. Genetics 127: 769–780

    Google Scholar 

  • Selman GG, Pawsey GJ (1965) The utilization of yolk platelets by tissues of Xenopus embryos studied by a safranin staining method. J Embryol Exp Morph 14:191–212

    Google Scholar 

  • Selman K, Wallace RA (1983) Oogenesis in Fundulus heteroclitus. III. Vitellogenesis. J Exp Zool 226:441–457

    Google Scholar 

  • Selman K, Wallace RA (1989) Cellular aspects of oocyte growth in teleosts. Zool Sci 6:211–231

    Google Scholar 

  • Sharrock WJ, Rosenwasser TA, Gould J, Knott J, Hussey D, Gordon JI, Banaszak L (1992) Sequence of lamprey vitellogenin. Implications for the lipovitellin crystal structure. J Mol Biol 226:903–907

    Google Scholar 

  • Shen X, Steyrer E, Retzek H, Sanders EJ, Shneider WJ (1993) Chicken oocyte growth: receptor-mediated yolk deposition. Cell Tiss Res 272:459–471

    Google Scholar 

  • Speith J, Denison K, Zucker E, Blumenthal T (1985) The nucleotide sequence of a nematode vitellogenin gene. Nucleic Acids Res 13: 7129–7138

    Google Scholar 

  • Speith J, Nettleton M, Zucker-Aprison E, Lea K, Blumenthal T (1991) Vitellogenin motifs conserved in nematodes and vertebrates. J Mol Evol 32:429–438

    Google Scholar 

  • Swofford DL (1993) In: PAUP: Phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois

  • Taborsky G (1974) Phosphoproteins. Adv Prot Chem 28:1–210

    Google Scholar 

  • Taborsky G (1980) Iron binding by phosvitin and its conformational consequences. J Biol Chem 255:2976–2985

    Google Scholar 

  • Taborsky G, Mok C-C (1967) Phosvitin. J Biol Chem 242:1495–1501

    Google Scholar 

  • Tata JR, Baker BS, Deeley JV (1980) Vitellogenin as a multigene family. Not all Xenopus vitellogenin genes may be in an “expressible” configuration. J Biol Chem 255:6721–6726

    Google Scholar 

  • Terpstra P, AB G (1988) Homology of Drosophila yolk proteins and the triacylglycerol lipase family. J Mol Biol 663–665

  • Trewitt PM, Heilmann LJ, Degrugillier SS, Kumaran AK (1992) The boll weevil vitellogenin gene: nucleotide sequence, structure, and evolutionary relationship to nematode and vertebrate vitellogenin genes. J Mol Evol 34:478–492

    Google Scholar 

  • Urist MR, Schjeide AO (1961) The partition of calcium and protein in the blood of oviparous vertebrates during estrus. J Gen Physiol 44:743–756

    Google Scholar 

  • Urist MR, Schjeide OA, Mclean FC (1958) The partition and binding of calcium in the serum of the laying hen and of the estrogenized rooster. Endocrinol 63:;570–585

    Google Scholar 

  • van het Schip F, Samallo J, Broos J, Ophuis J, Mojet M, Gruber M, Ab G (1987) Nucleotide sequence of a chicken vitellogenin gene and derived amino acid sequence of the encoded yolk precursor protein. J Mol Biol 196:245–260

    Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    Google Scholar 

  • Wahli W (1988) Evolution and expression of vitellogenin genes. TIG 4:227–232

    Google Scholar 

  • Wahli W, Dawid IB, Wyler T, Jaggi RB, Weber R, Ryffel GU (1979) Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell 16:535–549

    Google Scholar 

  • Wallace RA (1970) Studies on amphibian yolk IX. Xenopus vitellogenin. Biochim Biophys Acta 215:176–183

    Google Scholar 

  • Wallace RA (1985) Vitellogenesis and oocyte growth in nonmammalian vertebrates. In: Browder LW (ed) Developmental biology, vol 1. Plenum Press, New York, pp 127–177

    Google Scholar 

  • Wallace RA, Begovac PC (1985) Phosvitins in Fundulus oocytes and eggs. Preliminary chromatographic and electrophoretic analyses together with biological considerations. J Biol Chem 260:11268–11274

    Google Scholar 

  • Wallace RA, Jared DW (1969) Studies on amphibian yolk. VII. Serumphosphoprotein synthesis by vitellogenic females and estrogen-treated males of Xenopus laevis. Can J Biochem 46:953–959

    Google Scholar 

  • Wallace RA, Morgan JP (1986a) Isolation of phosvitin: retention of small molecular weight species and staining characteristics on electrophoretic gels. Anal Biochem 157:256–261

    Google Scholar 

  • Wallace RA, Morgan JP (1986b) Chromatographic resolution of chicken phosvitin. Biochem J 240:871–878

    Google Scholar 

  • Wallace RA, Selman K (1978) Oogenesis in Fundulus heteroclitus I. Preliminary observation on oocyte maturation in vivo and in vitro. Dev Biol 62:354–369

    Google Scholar 

  • Wallace RA, Selman K (1980) Oogenesis in Fundulus heteroclitus II. The transition from vitellogenesis to maturation. Gen Comp Endocrinol 42:345–354

    Google Scholar 

  • Wallace RA, Selman K (1981) Cellular and dynamic aspects of oocyte growth in teleosts. Am Zool 21:325–343

    Google Scholar 

  • Wallace RA, Selman K (1985) Major protein changes during vitellogenesis and maturation of Fundulus oocytes. Dev Biol 110:492–498

    Google Scholar 

  • Wallace RA, Jared DW, Eisen AZ (1966) A general method for the isolation and purification of phosvitin from vertebrate eggs. Can J Biochem 44:1647–1655

    Google Scholar 

  • Wallace RA, Carnevali O, Hollinger TG (1990a) Preparation and rapid resolution of Xenopus phosvitins and phosvettes by high-performance liquid chromatography. J Chromat 519:75–86

    Google Scholar 

  • Wallace RA, Hoch KL, Carnevali O (1990b) Placement of small lipovitellin subunits within the vitellogenin precursor in Xenopus laevis. J Mol Biol 213:407–409

    Google Scholar 

  • Wiley HS, Wallace RA (1981) The structure of vitellogenin. Multiple vitellogenins in Xenopus laevis give rise to multiple forms of the yolk proteins. J Biol Chem 256:8626–8634

    Google Scholar 

  • Yamagami K (1960) Phosphorous metabolism in fish eggs II. Transfer of some phosphorous compounds from egg yolk into embryonic tissues in Salmo irideus during development. Sci Papers Coll Gen Ed Univ Tokyo 10:325–336

    Google Scholar 

  • Yano K-I, Toriyama-Sakurai M, Watabe S, Izumi S, Tomino S (1994) Structure and expression of mRNA for vitellogenin in Bombyx mori. Biochim Biophys Acta 1218:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G.J. LaFleur, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaFleur, G.J., Byrne, B.M., Kanungo, J. et al. Fundulus heteroclitus vitellogenin: The deduced primary structure of a piscine precursor to noncrystalline, liquid-phase yolk protein. J Mol Evol 41, 505–521 (1995). https://doi.org/10.1007/BF00160323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160323

Key words

Navigation