Skip to main content
Log in

A redefinition of the Asp-Asp domain of reverse transcriptases

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The rules defining the Asp-Asp domain of RNA-dependent polymerases deduced by Argos (1988) were tested in a set of 53 putative reverse transcriptases (RTs) sequences. Since it was found that some of these rules are not followed by RTs coded by bacteria, group 11 introns, and non-LTR retrotransposons, we present here a more strict definition of the Asp-Asp domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

RT:

reverse transcriptase

DD:

Asp-Asp

ORF:

open reading frame

mt:

mitochondria

pt:

plastid

References

  • Argos A (1988) A sequence motif in many polymerases. Nucleic Acid Res 16:9909–9916

    Google Scholar 

  • Bernad A, Lázaro JM, Salas M, Blanco L (1990) The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage ϕ29 DNA polymerase for protein-primed initiation and polymerization. Proc Natl Acad Sci USA 87:4610–4614

    Google Scholar 

  • Besanky NJ (1990) A retrotransposable element from the mosquito Anopheles gambiae. Mol Cell Biol 10:863–871

    Google Scholar 

  • Blanco L, Bernad A, Blasco MA, Salas M (1991) A general structure for DNA-dependent DNA polymerases. Gene 100:27–38

    Google Scholar 

  • Boer PH, Gray MW (1988) Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are linked to ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. The EMBO Jour 7:3501–3508

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A (1980) Assembly of the mitochondrial membrane system. J Biol Chem 255:11927–11941

    Google Scholar 

  • Burke WD, Calalang CC, Eickbush TH (1987) The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzymne. Mol Cell Biol 7:2221–2230

    Google Scholar 

  • Cappello J, Handelsman K, Lodish HF (1985) Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43:105–115

    Google Scholar 

  • Clare F, Farabaugh P (1985) Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc Natl Acad Sci USA 82:2829–2833

    Google Scholar 

  • Cummings DJ, Michel F, McNally KL (1989) DNA sequence analysis of the 24.5 kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Curr Genet 16:381–406

    Google Scholar 

  • Di Nocera PP, Casari G (1987) Related polypeptides are encoded by Drosophila melanogaster F elements, I factos, and mammalian L1 sequences. Proc Natl Acad Sci USA 84:5843–5847

    Google Scholar 

  • Fawcett DH, Lister CK, Kellett E, Finnegan DJ (1986) Transposable elements controlling 1-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47:1007–1015

    Google Scholar 

  • Fourcade-Peronnet F, d'Auriol L, Becker J, Galibert F, BestBelpomme M (1988) Primary structure and functional organization of Drosophila 1731 retrotransposon. Nucleic Acid Res 16:6113–6125

    Google Scholar 

  • Franchini G, Guo HG, Gallo RC, Collalti E, Fargnoli KA, Hall LF, Wong-Staal F, Reitz MS Jr (1987) Sequence of simian immunodeficiency virus and its relationship to the human immunodeficiency viruses. Nature 328:539–543

    Google Scholar 

  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294

    Google Scholar 

  • Garvey KJ, Oberste MS, Elser JE, Braun MJ, Gonda MA (1990) Nucleotide sequence and genome organization of biologically active proviruses of the bovine immunodeficiency-like virus. Virology 175:391–409

    Google Scholar 

  • Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326:662–669

    Google Scholar 

  • Helene C, Maurizot JC (1981) Interactions of oligopeptides with nucleic acids. CRC Critical Rev Biochem 10:213–258

    Google Scholar 

  • Hizi A, McGill C, Hughes SH (1988) Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants. Proc Natl Acad Sci USA 85:1218–1222

    Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    Google Scholar 

  • Hull R, Sadler J, Longstaff M (1986) The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retrovirus. The EMBO J 5:3083–3090

    Google Scholar 

  • Inokuchi Y, Hirashima A (1987) Interference with viral infection by defective RNA replicase. J Virol 61:3946–3949

    Google Scholar 

  • Inouye S, Yuki S, Saigo K (1986) Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur J Biochem 154:417–425

    Google Scholar 

  • Inouye S, Hsu MY, Eagle S, Inouye M (1989) Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56:709–717

    Google Scholar 

  • Inouye S, Herzer PJ, Inouye M (1990) Two independent retrons with highly diverse reverse transcriptase in Myxococcus xanthus. Proc Natl Acad Sci USA 87:942–945

    Google Scholar 

  • Jin YK, Bennetzen JL (1989) Structure and coding properties of Bsl, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86:6235–6239

    Google Scholar 

  • Kamer G, Argos A (1984) Primary structural comparisons of RNA dependent polymerases from plant, animal and bacterial viruses. Nucleic Acid Res 12:7269–7282

    Google Scholar 

  • Kato S, Matsuo M, Nishimura N, Takahashi N, Takano T (1987) The entire nucleotide sequence of baboon endogenous virus DNA: a chimeric genome structure of murine type C and simian type D retrovirus. Jpn J Genet 62:127–137

    Google Scholar 

  • Kawakami T, Sherman L, Dahlberg J, Gazit A, Yaniv A, Tronick SR, Aaronson SA (1987) Nucleotide sequence analysis of equine infectious anemia virus proviral DNA. Virology 158:300–312

    Google Scholar 

  • Kimmel BE, Ole-Moiyoi OK, Young JR (1987) Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. Mol Cell Biol 7:1465–1475

    Google Scholar 

  • Kück U (1989) The intron of a plastid gene from a green algae contains an open reading frame for a reverse transcriptase-like enzyme. Mol Gen Genet 218:257–265

    Google Scholar 

  • Lampson BC, Sun J, Hsu MY, Vallejo-Ramirez J, Inouye S, Inouye M (1989) Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science 243:1033–1038

    Google Scholar 

  • Lang BF, Ahne F (1985) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. J Mol Biol 184:353–366

    Google Scholar 

  • Larder BA, Purifoy DIM, Powell KL, Darby G (1987) Site specific mutagenesis of AIDS virus reverse transcriptase. Nature 327:716–717

    Google Scholar 

  • Lazcano A, Fastag J, Gariglio P, Ramirez C, Oró, J (1988) On the early evolution of RNA polymerase. J Mol Evol 27:365–376

    Google Scholar 

  • Lazcano A, Valverde V, Hernández G, Gariglio P, Fox GE, Oró J (1992) On the early emergence of reverse transcription: theoretical basis and experimental evidence. J Mol Evol 35:524–536

    Google Scholar 

  • Lim D, Maas WK (1989) Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Cell 56:891–904

    Google Scholar 

  • Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchinson CA (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6:168–182

    Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5:1630–1638

    Google Scholar 

  • Murphy NB, Pays A, Tebabi P, Coquelet H, Guyaux M, Steinert M, Pays E (1987) Trypanosoma brucei repeated elements with unusual structural and transcriptional properties. J Mol Biol 195:855–871

    Google Scholar 

  • Olmsted RA, Hirsch VM, Purcell RH, Johnson PR (1989) Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses. Proc Natl Acad Sci USA 86:8088–8092

    Google Scholar 

  • Ono M, Toh H, Miyata T, Awaya T (1985) Nucleotide sequence of the syrian hamster intracisternal A-particle gene: closing evolutionary relationship of type A particle gene to types B and D oncovirus genes. J Virol 55:387–394

    Google Scholar 

  • Ono M, Yanusaga T, Miyata T, Ushikubo H (1986) Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol 60:589–598

    Google Scholar 

  • Pande S, Lemire EG, Nargang FE (1989) The mitochondrial plasmid from Neurospora intermedia strain LaBelle-1b contains a long open reading frame with blocks of amino acids characteristic of reverse transcriptases and related proteins. Nucleic Acid Res 17:2023–2042

    Google Scholar 

  • Power MD, Marx PA, Bryant ML, Gardner MB, Barr PJ, Luciw PA (1986) Nucleotide sequence of SRV-1, a type D simian acquired immune deficiency syndrome retrovirus. Science 231:1567–1572

    Google Scholar 

  • Priimdgi AF, Mizrokhi LJ, Ilyin YV (1988) The Drosophila mobile element jockey belongs to LINEs and contains coding sequence homologous to some retroviral proteins. Gene 70:253–262

    Google Scholar 

  • Querat G, Audoly G, Sonigo P, Vigne R (1990) Nucleotide sequence analysis of SA-OMVV, a visna-related ovine lentivirus: phylogenetic history of lentivirus. Virology 175:434–447

    Google Scholar 

  • Régmier P, Grunberg-Manago M, Portier V (1987) Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase: homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem 262:63–68

    Google Scholar 

  • Repaske R, Steele PE, O'Neill RR, Rabson AB, Martin MA (1985) Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol 54:764–772

    Google Scholar 

  • Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y (1985) Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci USA 82:677–681

    Google Scholar 

  • Saigo K, Kugimiya W, Matsuo Y, Inouye S, Yoshioka K, Yuki S (1984) Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312:659–661

    Google Scholar 

  • Saltarelli M, Querat G, Konings DAM, Vigne R, Clements JE (1990) Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179:347–364

    Google Scholar 

  • Schulte U, Lambowitz AM (1991) The LaBelle mitochondrial plasmid of Neurospora intermedia encodes a novel DNA that may be derived from a reverse transcriptase. Mol Cell Biol 11:1696–1706

    Google Scholar 

  • Schuster W, Brennicke A (1987) Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? The EMBO J 6:2857–2863

    Google Scholar 

  • Schwartz DE, Tizard R, Gilbert G (1983) Nucleotide sequence of Rous sarcoma virus. Cell 32:853–869

    Google Scholar 

  • Seiki M, Hattori S, Hirayama Y, Yoshida M (1983) Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA 80:3618–3622

    Google Scholar 

  • Shimotohno K, Takakashi Y, Shimizu N, Gojobori T, Golde DW, Chen ISY, Miwa M, Sugimura T (1985) Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene. Proc Natl Acad Sci USA 82:3101–3105

    Google Scholar 

  • Shinnick TM, Lerner RA, Sutcliffe JG (1981) Nucleotide sequence of the Moloney murine leukaemia virus. Nature 293:543–548

    Google Scholar 

  • Sonigo P, Alizon M, Staskus K, Klatzmann D, Cole S, Danos O, Retzel E, Tiollais P, Haase A, Wain-Hobson S (1985) Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369–382

    Google Scholar 

  • Sonigo P, Barker C, Hunter E, Wain-Hobson S (1986) Nucleotide sequence of Mason-Pfizer monkey virus: an immuno-suppressive D type retrovirus. Cell 45:375–385

    Google Scholar 

  • Taylor WR (1986) The classification of amino acid conservation. J Theor Biol 119:205–218

    Google Scholar 

  • Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M (1985) Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17

    Google Scholar 

  • Wang TSF, Wong SW, Korn D (1989) Human DNA polymerase alpha: predicted functional domains and relationships with viral DNA polymerases. The FASEB Jour 3:14–21

    Google Scholar 

  • Wong SW, Wahl AF, Yuan MP, Arai N, Pearson BE, Arai K, Korn D, Hunkapiller MW, Wang TSF (1988) Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. The EMBO Jour 7:37–47

    Google Scholar 

  • Xiong Y, Eickbush TH (1988) The site-specific ribosomal DNA insertion element RIBm belongs to a class of non-longterminal-repeat retrotransposons. Mol Cell Biol 8:114–123

    Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO Jour 9:3353–3362

    Google Scholar 

  • Yuki S, Ishimaru S, Inouye S, Saiogo K (1986) Identification of genes for reverse transcriptase-like enzymes in two Drosophila retrotransposons 412 and gypsy; a rapid detection method of reverse transcriptase genes using YXDD box probes. Nucleic Acid Res 14:3017–3030

    Google Scholar 

  • Zavriev SK, Borisova OV (1987) Possible functional role of the “DD domain” of RNA-dependent polymerases. Molekuyarnaya Biologiya 21:229–241 (English translation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: A. Lazcano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, A.M., Medrano, L., Lazcano, A. et al. A redefinition of the Asp-Asp domain of reverse transcriptases. J Mol Evol 35, 551–556 (1992). https://doi.org/10.1007/BF00160216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160216

Key words

Navigation