Journal of Mathematical Biology

, Volume 33, Issue 2, pp 163–192 | Cite as

Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations

  • Faustino Sánchez-Garduño
  • Philip K. Maini


In this paper we use a dynamical systems approach to prove the existence of a unique critical value c* of the speed c for which the degenerate density-dependent diffusion equation u ct = [D(u)u x ] x + g(u) has: 1. no travelling wave solutions for 0 < c < c*, 2. a travelling wave solution u(x, t) = ϕ(x - c*t) of sharp type satisfying ϕ(− ∞) = 1, ϕ(τ) = 0 ∀τ ≧ τ*; ϕ'(τ*−) = − c*/D'(0), ϕ'(τ*+) = 0 and 3. a continuum of travelling wave solutions of monotone decreasing front type for each c > c*. These fronts satisfy the boundary conditions ϕ(− ∞) = 1, ϕ'(− ∞) = ϕ(+ ∞) = ϕ'(+ ∞) = 0. We illustrate our analytical results with some numerical solutions.

Key words

Travelling waves Non-linear diffusion equations Sharp solutions Wavespeed Degenerate diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andronov, A. A., Leontovich, E. A., Gordon, I.I., Maier, A. G.: Theory of dynamical systems on a plane. Israel Program for Scientific Translations, Jerusalem 1972Google Scholar
  2. 2.
    Arnold, V. I.: Ordinary differential equations. Cambridge: MIT Press 1980Google Scholar
  3. 3.
    Aronson, D. G.: Density-dependent interaction-systems. In: Steward, W. H., Ray, W. H., Conley, C. C. (eds.) Dynamics and modelling of reactive systems. New York: Academic Press 1980Google Scholar
  4. 4.
    Aronson, D. G.: The role of the diffusion in mathematical population biology: Skellam revisited. In: Fasano, A., Primicerio, M. (eds.) Lecture Notes in Biomathematics 57. Berlin Heidelberg New York: Springer 1985Google Scholar
  5. 5.
    Arrowsmith, D. K., Place, C. M.: An introduction to dynamical system. Cambridge: Cambridge University Press 1990Google Scholar
  6. 6.
    Britton, N. F.: Reaction-diffusion equations and their applications to biology. New York: Academic Press 1986Google Scholar
  7. 7.
    Carl, E. A.: Population control in Arctic ground squirrels. Ecology 52, 395–413 (1971)Google Scholar
  8. 8.
    Carr, J.: Applications of centre manifold theory. Berlin Heidelberg New York: Springer 1981Google Scholar
  9. 9.
    de Pablo, A., Vázquez, J. L.: Travelling waves in finite propagation in a reaction-diffusion equation. J. Diff. Equ. 93, 19–61 (1991)Google Scholar
  10. 10.
    Engler, H.: Relations between travelling wave solutions of quasilinear parabolic equations. Proc. Am. Math. Soc. 93, 297–302 (1985)Google Scholar
  11. 11.
    Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Berlin Heidelberg New York: Springer 1979Google Scholar
  12. 12.
    Fisher, R. A.: The wave of advance of advantageous genes. Ann. Eugen 7, 353–369 (1937)Google Scholar
  13. 13.
    Grindrod, P., Sleeman B. D.: Weak travelling wave fronts for population models with density-dependent dispersion. Math. Meth. Appl. Sci. 9, 576–586 (1987)Google Scholar
  14. 14.
    Gurney, W. S. C., Nisbet, R. M.: The regulation of inhomogeneous population. J. Theor. Biol. 441–457 (1975)Google Scholar
  15. 15.
    Gurney, W. S. C., Nisbet, R. M.: A note on non-linear population transport. J. Theor. Biol. 56, 249–251 (1976)Google Scholar
  16. 16.
    Gurtin, M. E., MacCamy, R. C.: On the diffusion of biological populations. Math. Biosci. 33 35–49 (1977)Google Scholar
  17. 17.
    Hadeler, K. P.: Travelling fronts and free boundary value problems. In: Albretch, J., Collatz, L., Hoffman, K. H. (eds.) Numerical Treatment of Free Boundary Value Problems. Basel: Birkhauser 1981Google Scholar
  18. 18.
    Hadeler, K. P.: Free boundary problems in biological models. In: Fasano, A., Primicerio, M. (eds.) Free Boundary Problems: Theory and Applications, Vol. II. London: Pitman 1983Google Scholar
  19. 19.
    Kolmogorov, A., Petrovsky, L., Piskounov, I. N.: Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem. (English translation containing the relevant results) In: Oliveira-Pinto, F., Conolly, B. W. (eds.) Applicable mathematics of non-physical phenomena. New York: Wiley 1982Google Scholar
  20. 20.
    Malajovich, G.: Programa Tracador de Diagramas de Fase. Instituto de Matematica. Universidade Federal do Rio de Janeiro, Brazil 1988Google Scholar
  21. 21.
    Montroll, E. W., West, B. J.: On an enriched collection of stochastic processes. In: Montroll, E. W., Lebowitz, J. L. (eds.) Fluctuation phenomena. Amsterdam: North-Holland 1979Google Scholar
  22. 22.
    Murray, J. D.: Mathematical biology. Biomathematics Texts 19. Berlin Heidelberg New York: Springer 1989Google Scholar
  23. 23.
    Myers, J. H., Krebs, Ch. J.: Population cycles in rodents. Sci. Am. 6, 38–46 (1974)Google Scholar
  24. 24.
    Newman, W. I.: Some exact solutions to a non-linear diffusion problem in population genetics and combustion. J. Theor. Biol. 85, 325–334 (1980)Google Scholar
  25. 25.
    Newman, W. I.: The long-time behaviour of the solution to a non-linear diffusion problem in population genetics and combustion. J. Theor. Biol, 104, 473–484 (1983)Google Scholar
  26. 26.
    Sánchez-Garduño, F.: Travelling waves in one-dimensional degenerate non-linear reaction-diffusion equations. D. Phil. thesis., University of Oxford (1993)Google Scholar
  27. 27.
    Sánchez-Garduño, F., Maini, P. K.: Travelling wave phenomena in some degenerate reaction-diffusion equations. J. Diff. Equ. (in press)Google Scholar
  28. 28.
    Sánchez-Garduño, F., Maini, P. K.: Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations (submitted)Google Scholar
  29. 29.
    Shiguesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Math. Biol. 79, 83–99 (1979)Google Scholar
  30. 30.
    Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)Google Scholar
  31. 31.
    Skellam, J. G.: The formulation and interpretation of mathematical models of diffusionary processes in population biology. In: Bartlett, M. S. et al. (eds.) The mathematical theory of the dynamics of biological population. New York: Academic Press 1973Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Faustino Sánchez-Garduño
    • 1
    • 2
  • Philip K. Maini
    • 1
  1. 1.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Departamento de Matemáticas. Facultad de CienciasUNAMMexicoD.F. Mexico

Personalised recommendations