Skip to main content
Log in

Ion cyclotron instability in the solar wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An ion cyclotron instability, arising because of the relative drift between the beam and the main components of the proton distribution function in the solar wind at 1 AU, is studied. The instability is excited in a bounded range of wave numbers provided the relative drift exceeds a certain minimum value called instability threshold. For \(\beta M = ({{8\pi NMT_\parallel M} \mathord{\left/ {\vphantom {{8\pi NMT_\parallel M} {B_0^2 )}}} \right. \kern-\nulldelimiterspace} {B_0^2 )}}\) ≳ 1, the instability threshold is smaller than or equal to the threshold of magnetosonic and Alfvén instabilities. The growth rates are enhanced by increasing relative drift and ratio of beam to main proton number density and by decreasing the wave numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham-Shrauner, B. and Feldman, W. C.: 1977a, J. Plasma Phys. 17, 123.

    Google Scholar 

  • Abraham-Shrauner, B. and Feldman, W. C.: 1977b, J. Geophys. Res. 82, 618.

    Google Scholar 

  • Bame, S. J., Asbridge, J. R., Feldman, W. C., Gary, S. P., and Montgomery, M. D.: 1975, Geophys. Res. Letters 9, 373.

    Google Scholar 

  • Cuperman, S., Gomberoff, L., and Sternlieb, A.: 1975, J. Plasma Phys. 13, 259.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D.: 1973a, J. Geophys. Res. 78, 2017.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D.: 1973b, J. Geophys. Res. 78, 6451.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D.: 1974, Rev. Geophys. Space Phys. 12, 715.

    Google Scholar 

  • Fried, B. D. and Conte, S. D.: 1961, The Plasma Dispersion Function, Academic Press, New York.

    Google Scholar 

  • Gary, S. P., Feldman, W. C., Forslund, D. W., and Montgomery, M. D.: 1975a, Geophys. Res. Letters 2, 79.

    Google Scholar 

  • Gary, S. P., Feldman, W. C., Forslund, D. W., and Montgomery, M. D.: 1975b, J. Geophys. Res. 80, 4197.

    Google Scholar 

  • Gary, S. P., Montgomery, M. D., Feldman, W. C., and Forslund, D. W.: 1976, J. Geophys. Res. 81, 1241.

    Google Scholar 

  • Hollweg, J. V. and Völk, H. J.: 1970, J. Geophys. Res. 75, 5297.

    Google Scholar 

  • Lakhina, G. S.: 1977, Solar Phys. 52, 153.

    Google Scholar 

  • Lakhina, G. S. and Buti, B.: 1976, J. Geophys. Res. 81, 2135.

    Google Scholar 

  • Montgomery, D. C. and Tidman, D. A.: 1964, Plasma Kinetic Theory, McGraw-Hill, New York.

    Google Scholar 

  • Montgomery, M. D., Gary, S. P., Forslund, D. W., and Feldman, W. C.: 1975, Phys. Rev. Letters 31, 667.

    Google Scholar 

  • Montgomery, M. D., Gary, S. P., Feldman, W. C., and Forslund, D. W.: 1976, J. Geophys. Res. 81, 2743.

    Google Scholar 

  • Scharer, J. E. and Trivelpiece, A. W.: 1967, Phys. Fluids 10, 591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakhina, G.S. Ion cyclotron instability in the solar wind. Sol Phys 57, 467–473 (1978). https://doi.org/10.1007/BF00160118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160118

Keywords

Navigation