Skip to main content
Log in

In situ measurements of enzyme activities in the brain

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The present review focusses on enzymes involved in the metabolism of amino acid neurotransmitters and the microphotometric determinations of their activities in various layers of the rat hippocampus. The enzymes are NAD-linked isocitrate dehydrogenase (NAD-ICDH), glutamate dehydrogenase (GDH), and GABA transaminase (GABAT), all of which are localized in mitochondria. GDH seems to be restricted to astrocytes, whereas NAD-ICDH and GABAT are localized in neurons as well as in astrocytes. NAD-ICDH is an important enzyme of the tricarboxylic acid cycle and may deliver α-ketoglutarate for the formation of glutamate and GABA, which serve as neurotransmitters in the hippocampus. GDH catalyses the interconversion of α-ketoglutarate and glutamate, whereas GABAT is the important GABA-degrading enzyme and requires α-ketoglutarate for its activity. While differing in their cellular distribution and activity levels, NAD-ICDH, GDH and GABAT are significantly correlated in their hippocampal distribution. Furthermore, developmental and pharmacohistochemical studies suggest that the distribution and activity of astrocytic GDH is correlated with amino-acidergic neurotransmission in the hippocampus. The data reported give further evidence for a metabolic relationship between neurons and astrocytes in the turnover and metabolism of glutamate and GABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aamodt, A., Aambo, A., Walaas, J., Soreide, A. Y. & Fonnum, F. (1984) Autoradiographic demonstration of glutamate structures after stereotoxic injection of kainic acid in rat hippocampus. Brain Res. 294, 341–5.

    Google Scholar 

  • Aoki, C., Milner, T. A., Sheu, K.-Fr., Blass, J. P. & Pickel, V. M. (1987) Regional distribution of astrocytes with intense immuno-reactivity for glutamate dehydrogenase in rat brain: implications for neuron-glia interactions in glutamate transmission. J. Neurosci. 7, 2214–31.

    Google Scholar 

  • Balázs, R., Machiyama, Y., Hammond, B. J., Julian, T. & Richter, D. (1970) The operation of the 4-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem. J. 116, 445–67.

    Google Scholar 

  • Chee, P. Y., Dahl, J. L. & Fahien, L. A. (1979) The purification and properties of rat brain glutamate dehydrogenase. J. Neurochem. 33, 53–60.

    Google Scholar 

  • Cotman, C. W., Forster, A. & Lauthorn, T. (1981) An overview of glutamate as a neurotransmitter. In Glutamate as a Neurotransmitter (edited by DiChiara, G. & Gessa, G. L.) pp. 1–28. New York: Raven Press.

    Google Scholar 

  • Cotman, C. W., Flatman, G. A., Ganong, A. H. & Perkins, M. N. (1986) Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus. J. Physiol. (London) 378, 403–15.

    Google Scholar 

  • Crawford, J. L. & Connor, J. D. (1973) Localization and release of glutamic acid in relation to the hippocampal mossy fibre pathway. Nature 244, 442–3.

    Google Scholar 

  • DeBoer, T. & Bruinvels, J. (1977) Assay and properties of 4-butyric-2-oxoglutaric acid transaminase and succinic semialdehyde dehydrogenase in rat brain tissue. J. Neurochem. 28, 471–8.

    Google Scholar 

  • Draper, N. & Smith, H. (1981) Applied Regression Analysis. New York: John Wiley.

    Google Scholar 

  • Fonnum, F. (1984) Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1–11.

    Google Scholar 

  • Fonnum, F. (1985) Determination of transmitter amino acid turnover. In Neuromethods. Series I: Neurochemistry. E. Amino Acids (edited by Boulton, A.A., Baker, G. B. & Wood, J. D.) pp. 201–37. Clifton: Humana Press.

    Google Scholar 

  • Fonnum, F. & Paulsen, R. E. (1990) Comparison of transmitter amino acid levels in rat globus pallidus and neostriatum during hypoglycemia or after treatment with methionine sulfoximine or γ-vinyl γ-aminobutyric acid. J. Neurochem. 54, 1253–7.

    Google Scholar 

  • Friede, R. L. (1966) Topographic Brain Chemistry. New York: Academic Press.

    Google Scholar 

  • Göebell, H. & Klingenberg, M. (1964) DPN-spezifische Isocitrat-Dehydrogenase der Mitochondrien. I. Kinetische Eigenschaften, Vorkommen und Funktion der DPN-spezifischen Isocitrat-Dehydrogenase. Biochem. Z. 340, 441–64.

    Google Scholar 

  • Gonzales, P., Ventura, E. & Caldes, T. (1976) Glutamate dehydrogenase from rat brain. In The Urea Cycle (edited by Grisola, S.) pp. 73–81. New York: John Wiley.

    Google Scholar 

  • Halonen, T., Pitkänen, A., Saano, V. & Riekkinen, P. J. (1991) Effects of vigabatrin (γ-vinyl GABA) on neurotransmission related amino acids and on GABA and benzodiazepine receptor binding in rats. Epilepsia 32, 242–9.

    Google Scholar 

  • Hawkins, R. A. & Mans, A. M. (1983) Intermediary metabolism of carbohydrates and other fuels. In Handbook of Neurochemistry (edited by Lajtha, A.) Vol 3., 2nd edn, pp. 259–94. New York: Plenum Press.

    Google Scholar 

  • Hearl, W. G. & Churchich, J. E. (1984) Interactions between 4-aminobutyrate aminotransferase and succinic semialdehyde dehydrogenase, two mitochondrial enzymes. J. Biol. Chem. 259, 11459–63.

    Google Scholar 

  • Hyde, J. C. & Robinson, N. (1974) Gamma-aminobutyrate transaminase activity in rat cerebellar cortex: a histochemical study. Brain Res. 82, 109–16.

    Google Scholar 

  • Hyde, J. C. & Robinson, N. (1976) Improved histological localization of GABA-transaminase activity in rat cerebellar cortex after aldehyde fixation. Histochemistry 46, 261–8.

    Google Scholar 

  • Kaneko, T., Shigemoto, R. & Mizuno, N. (1988) Metabolism of glutamate and ammonia in astrocyte: an immunocyto-chemical study. Brain Res. 457, 160–4.

    Google Scholar 

  • King, M. A., Münter, B. E., Reep, R. L. & Walker, D. W. (1989) Acetylcholinesterase stain intensity variation in the rat dentate gyrus: a quantitative description based on digital image analysis. Neuroscience 33, 203–21.

    Google Scholar 

  • Kugler, P. (1987) Cytochemical demonstration of aspartate amino transferase in the mossy-fibre system of the rat hippocampus. Histochemistry 87, 623–5.

    Google Scholar 

  • Kugler, P. (1988a) Quantitative enzyme histochemistry in the brain. Histochemistry 90, 99–107.

    Google Scholar 

  • Kugler, P. (1988b) The enzyme histochemistry of neurotransmitter metabolism. Adv. Anat. Embryol. Cell Biol. 111, 40–60.

    Google Scholar 

  • Kugler, P. (1989) Localization of transmitter-metabolizing enzymes by enzyme histochemistry in the rat hippocampus. In The Hippocampus - New Vistas (edited by Chan-Palay, V. & Köhler, C.) Neurol. Neurobiol. 52, 119–30. New York: Alan R. Liss.

    Google Scholar 

  • Kugler, P. (1990) Microphotometric determination of enzymes in, brain sections. III. Glutamate dehydrogenase. Histochemistry 93, 537–40.

    Google Scholar 

  • Kugler, P. (1993) Enzymes involved in glutamatergic and GABAergic neurotransmission. Int. Rev. Cytol. (in press).

  • Kugler, P. & Baier, G. (1990) Microphotometric determination of enzymes in brain section. II. GABA transaminase. Histochemistry 93, 501–5.

    Google Scholar 

  • Kugler, P. & Baier, G. (1992) Mitochondrial enzymes related to glutamate and GABA metabolism in the hippocampus of young and aged rats: a quantitative histochemical study. Neurochem. Res. 17, 179–85.

    Google Scholar 

  • Kugler, P. & Schiebler, T. H. (1989) Quantitative pharmacohisto-chemical study on glutamate dehydrogenase in astrocytes of the rat hippocampus. Biomed. Res. (suppl. 3) 10, 251–8.

    Google Scholar 

  • Kugler, P. & Vogel, S. (1991) Microphotometric determination of enzymes in brain sections. IV. Isocitrate dehydrogenases. Histochemistry 95, 629–33.

    Google Scholar 

  • Leong, S. F. & Clark, J. B. (1984) Regional development of glutamate dehydrogenase in the rat brain. J. Neurochem. 43, 106–11.

    Google Scholar 

  • Liu, C. J., Grandes, P., Matute, C., Cuenod, M. & Streit, P. (1989) Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochemistry 90, 427–45.

    Google Scholar 

  • Loverde, A. W. & Lehrer, G. M. (1973) Subcellular distribution of isocitrate dehydrogenases in neonatal and adult mouse brain. J. Neurochem. 20, 441–8.

    Google Scholar 

  • Macdonnell, P. C. & Greengard, O. (1974) Enzymes in intracellular organelles of adult and developing rat brain. Arch. Biochem. Biophys. 163, 644–55.

    Google Scholar 

  • Mcgeer, E. G., Mcgeer, P. L. & Thompson, S. (1983) GABA and glutamate enzymes. In Glutamine, Glutamate, and GABA (edited by Hertz, L., Kvamme, E., Mcgeer, E. & Schousboe, A.) pp. 3–17. New York: Alan R. Liss.

    Google Scholar 

  • Mcgeer, P. L., Eccles, J. C. & Mcgeer, E. G. (1987) Molecular Neurobiology of the Mammalian Brain. New York: Plenum Press.

    Google Scholar 

  • Martin, D. L. (1976) Carrier-mediated transport and removal of GABA from synaptic regions. In GABA in Nervous System Function (edited by Roberts, E., Chase, T. N. & Tower, D. B.) pp. 347–85. New York: Raven Press.

    Google Scholar 

  • Matsui, Y. & Deguchi, T. (1977) Effects of gabaculine, a new potent inhibitor of γ-aminobutyrate transaminase, on the brain γ-aminobutyrate content and convulsions in mice. Life Sci. 20, 1291–6.

    Google Scholar 

  • Nagai, T., Mcgeer, P. L. & Mcgeer, E. G. (1983) Distribution of GABA-T-intense neurons in the rat forebrain and mid-brain. J. Comp. Neurol. 218, 220–38.

    Google Scholar 

  • Norenberg, M. D. & Martinez-Hernandez, A. (1979) The structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303–10.

    Google Scholar 

  • Okada, Y. & Shimada, C. (1975) Distribution of γ-aminobutyric acid (GABA) and glutamate decarboxylase (GAD) activity in the guinea pig hippocampus. Microassay method for the determination of GAD activity. Brain Res. 98, 202–6.

    Google Scholar 

  • Ottersen, O. P. & Storm-Mathisen, J. (1989) Excitatory and inhibitory amino acids in the hippocampus. In The Hippocampus - New Vistas (edited by Chan-Palay, V. & Köhler, C.) Neurol. Neurobiol. 52, 97–117. New York: Alan R. Liss.

    Google Scholar 

  • Patel, A. J., Weir, M. D., Hunt, A., Takourdin, C. S. M. & Thomas, D. G. T. (1985) Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system. Brain Res. 331, 1–9.

    Google Scholar 

  • Paulsen, R. E. & Fonnum, F. (1988) Regulation of transmitter γ-aminobutyric acid (GABA) synthesis and metabolism illustrated by the effect of γ-vinyl GABA and hypoglycemia. J. Neurochem. 50, 1151–7.

    Google Scholar 

  • Paulsen, R. E., Odden, E. & Fonnum, F. (1988) Importance of glutamine for γ-aminobutyric acid synthesis in rat neostriatum in vivo. J. Neurochem. 51, 1294–9.

    Google Scholar 

  • Plaut, G. W. E. (1963) Isocitrate dehydrogenases. In The Enzymes (edited by Boyer, P. D., Lardy, H. & Myrbäck, K.) Vol. 7, 2nd Edn, pp. 105–26. New York: Academic Press.

    Google Scholar 

  • Plaut, G. W. E. (1970) DPN-linked isocitrate dehydrogenase of animal tissues. Curr. Top. Cell. Regul. 2, 1–27.

    Google Scholar 

  • Plaut, G. W. E., Cook, M. & Aogaichi, T. (1983) The subcellular location of isoenzymes of NADP-isocitrate dehydrogenases in tissues from pig, ox and rat. Biochim. Biophys. Acta 760, 300–8.

    Google Scholar 

  • Quastel, J. H. (1978) Cerebral glutamate-glutamine inter-relations in vivo and in vitro. In Dynamic properties of Glia Cells (edited by Schoffeniels, E., Franck, G., Hertz, L. & Tower, D. B.) pp. 153–62. Oxford: Pergamon Press.

    Google Scholar 

  • Rafalowska, U. & Ksiezak, H. (1976) Subcellular localization of enzymes oxidizing citrate in rat brain. J. Neurochem. 27, 813–5.

    Google Scholar 

  • Rando, R. R. & Bangerter, F. W. (1977) The in vivo inhibition of GABA-transaminase by gabaculine. Biochem. Biophys. Res. Commun. 76, 1276–81.

    Google Scholar 

  • Rothe, F., Schmidt, W. & Wolf, G. (1983) Postnatal changes in the activity of glutamate dehydrogenase and aspartate amino-transferase in the rat nervous system with special reference to the glutamate transmitter metabolism. Dev. Brain Res. 11, 67–74.

    Google Scholar 

  • Rothe, F., Wolf, G. & Schünzel, G. (1990) Immunohistochemical demonstration of glutamate dehydrogenase in the postnatally developing rat hippocampal formation and cerebellar cortex: comparison to activity staining. Neuroscience 39, 419–29.

    Google Scholar 

  • Salganicoff, L. & DeRobertis, E. (1965) Subcellular distribution of enzymes of the glutamic acid, glutamine and γ-aminobutyric acid cycles in rat brain. J. Neurochem. 12, 287–309.

    Google Scholar 

  • Salganicoff, L. & Koeppe, R. E. (1968) Subcellular distribution of pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases and malate-enzyme in rat brain. J. Biol. Chem. 243, 3416–20.

    Google Scholar 

  • Schmidbauer, J. M., Kugler, P. & Horvath, E. (1990) Glutamate producing aspartate aminotransferase in glutamatergic perforant path terminals of the rat hippocampus. Histochemistry 94, 427–33.

    Google Scholar 

  • Schousboe, A. & Hertz, L. (1983) Regulation of glutamatergic and GABAergic neuronal activity by astroglial cells. In Dale's Principle and Communication between Neurons (edited by Osborne, N. N.) pp. 113–41. Oxford: Pergamon Press.

    Google Scholar 

  • Schousboe, A. L., Larsson, O. M., Drejer, J., Krogsgaard-Larsen, P. & Hertz, L. (1983) Uptake and release processes for glutamine, glutamate, and GABA in cultured neurons and astrocytes. In Glutamine, Glutamate, and GABA in the Central Nervous System (edited by Hertz, L., Kvamme, E., Mcgeer, E. & Schousboe, A.) pp. 297–315. New York: Alan R. Liss.

    Google Scholar 

  • Schünzel, G., Wolf, G., Rothe, F. & Seidler, E. (1986) Histophotometric evaluation of glutamate dehydrogenase activity of the rat hippocampal formation during postnatal development, with special reference to the glutamate transmitter metabolism. Cell. Molec. Neurobiol. 6, 31–42.

    Google Scholar 

  • Shank, R. P. & Campbell, G. M. (1982) Glutamine and α-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum. Neurochem. Res. 7, 601–16.

    Google Scholar 

  • Shank, R. P. & Campbell, G. M. (1984) α-Ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle. J. Neurochem. 42, 1153–61.

    Google Scholar 

  • Singh Yadav, R. N. & Singh, S. C. (1981) Brain isocitrate dehydrogenase and its regulation by estradiol in female rats of various ages. Biochem. Med. 26, 258–63.

    Google Scholar 

  • Smith, E. L., Austen, B. M., Blumenthal, K. M. & Nyc, J. F. (1975) Glutamate dehydrogenases. In The Enzymes (edited by Boyer, P. D.) Vol 11, pp. 293–367. New York: Academic Press.

    Google Scholar 

  • Storm-Mathisen, J. (1981) Autoradiographic and microchemical localization of high affinity glutamate uptake. In Glutamate: Transmitter in the Central Nervous System (edited by Roberts, P. J., Storm-Mathisen, J. & Johnston, G. A. R.) pp. 89–116. London: John Wiley.

    Google Scholar 

  • Storm-Mathisen, J. & Fonnum, F. (1971) Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region. J. Neurochem. 18, 1105–11.

    Google Scholar 

  • Tansey, F. A., Farooq, M. & CammerW. (1991) Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J. Neurochem. 56, 266–73.

    Google Scholar 

  • Torgner, J. & Kvamme, E. (1990) Synthesis of transmitter glutamate and the glial-neuron interrelationship. Mol. Chem. Neuropathol. 12, 11–17.

    Google Scholar 

  • Tunnicliff, G. (1986) 4-Aminobutyrate transaminase. In Neuromethods. Series I: Neurochemistry, 5. Neurotransmitter Enzymes (edited by Boulton, A. A., Baker, G. B. & Yu, P. H.) pp. 389–419. Clifton: Humana Press.

    Google Scholar 

  • VanDuijn, P. & Van DerPloeg, M. (1980) Microscopic cytochemistry as matrix chemistry. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.). Ciba Foundation Symposium 73, 231–44. Amsterdam: Excerpta Medica.

    Google Scholar 

  • VanGelder, N. M. (1965) The histochemical demonstration of 4-aminobutyric acid metabolism by reduction of a tetrazolium salt. J. Neurochem. 12, 231–7.

    Google Scholar 

  • Vernadakis, A. (1988) Neuron-glia interrelations. Int. Rev. Neurobiol. 30, 149–224.

    Google Scholar 

  • Vincent, S. R., Lehman, J. & Mcgeer, E. G. (1980) The localization of GABA-transaminase in the striato-nigral system. Life Sci. 27, 595–601.

    Google Scholar 

  • Vincent, S. R., Kimura, M. & Mcgeer, E. G. (1982) GABA-transaminase in the basal ganglia, a pharmacohistochemical study. Brain Res. 251, 93–104.

    Google Scholar 

  • Ward, H. W., Thauki, C. M. & Bradford, H. F. (1983) Glutamine and glucose as precursors of transmitter amino acids: ex vivo studies. J. Neurochem. 40, 855–60.

    Google Scholar 

  • Weil-Malherbe, H. (1950) Significance of glutamic acid for the metabolism of nervous tissue. Physiol. Rev. 30, 549–55.

    Google Scholar 

  • Wenthold, R. J., Altschuler, R. A., Skaggs, K. K. & Reeks, K. A. (1987) Immunocytochemical characterization of glutamate dehydrogenase in the cerebellum of the rat. J. Neurochem. 48, 636–43.

    Google Scholar 

  • Willson, V. J. & Tipton, K. F. (1981) The activation of ox-brain NAD+-dependent isocitrate dehydrogenase by magnesium ions. Eur. J. Biochem. 113, 477–83.

    Google Scholar 

  • Wu, J.-Y. (1976) Purification, characterization, and kinetic studies of GAD and GABA-T from mouse brain. In GABA in Nervous System function (edited by Roberts, E., Chase, T. N. & Tower, D. B.) pp. 7–55. New York: Raven Press.

    Google Scholar 

  • Yu, A. C., Schousboe, A. & Hertz, L. (1982) Metabolic fate of [C14]-labeled glutamate in astrocytes in primary cultures. J. Neurochem. 39, 954–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugler, P. In situ measurements of enzyme activities in the brain. Histochem J 25, 329–338 (1993). https://doi.org/10.1007/BF00159497

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159497

Keywords

Navigation