Skip to main content
Log in

A self-consistent model for the storm radio emission from the Sun

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A self-consistent theoretical model for storm continuum and bursts is presented. We propose that the Langmuir waves are emitted spontaneously by an anisotropic loss-cone distribution of electrons trapped in the magnetic field above active regions. These high-frequency electrostatic waves are assumed to coalesce with lower-hybrid waves excited either by the trapped protons or by weak shocks, making the observed brightness temperature equal to the effective temperature of the Langmuir waves.

It is shown that whenever the collisional damping (ν c ) is more than the negative damping (-γ A ) due to the anisotropic distribution, there is a steady emission of Langmuir waves responsible for the storm continuum. The type I bursts are generated randomly whenever the collisional damping (ν c ) is balanced by the negative damping (-γ A ) at the threshold density of the trapped particles, since it causes the effective temperature of Langmuir waves to rise steeply. The number density of the particles responsible for the storm radiation is estimated. The randomness of type I bursts, brightness temperature, bandwidth and transition from type I to type III storm are self-consistently explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, A. O. and Thejappa, G.: 1988, Astron. Astrophys. 202, 267.

    Google Scholar 

  • Benz, A. O. and Wentzel, D. G.: 1981, Astron. Astrophys. 94, 100.

    Google Scholar 

  • Breizmann, B. N.: 1986, Soviet J. Plasma Phys. 12, 942.

    Google Scholar 

  • Daigne, G., Lantos-Jarray, M. F., and Pick, M.: 1970, in R. Howard (ed.), IAU Symp. 43, 609.

  • Elgaroy, O.: 1977, Solar Noise Storms, Pergamon Press, Oxford.

    Google Scholar 

  • Erdelyi, A.: 1953, Higher Transcendental Functions, McGraw-Hill, New York.

    Google Scholar 

  • Fung, S. F., Papagopoulos, K., and Wu, C. S.: 1982, J. Geophys. Res. 87, 8077.

    Google Scholar 

  • Hey, J. S.: 1946, Nature 157, 47.

    Google Scholar 

  • Ichimaru, S.: 1973, Basic Principles of Plasma Physics, W. A. Benjamin, New York.

    Google Scholar 

  • Kennel, C. F. and Petschek, H. E.: 1966, J. Geophys. Res. 71, 1.

    Google Scholar 

  • Kerdraon, A. and Mercier, C.: 1983, Astron. Astrophys. 127, 132.

    Google Scholar 

  • Krasnosel'skiph, V. V., Kruchina, E. N., Thejappa, G., and Volokitin, A. S.: 1985, Astron. Astrophys. 149, 323.

    Google Scholar 

  • Kulygin, V. M., Mikhailovskii, A. B., and Tsapelkin, E. S.: 1971, Plasma Phys. 13, 1111.

    Google Scholar 

  • Kundu, M. R.: 1965, Solar Radio Astronomy, Interscience Publishers, New York.

    Google Scholar 

  • Kundu, M. R., Gergely, T. E., Szabo, A., Loiacono, R., and White, S. M.: 1986, Astrophys. J. 308, 436.

    Google Scholar 

  • Lampe, M. and Papadopoulos, K.: 1977, Astrophys. J. 212, 886.

    Google Scholar 

  • Le Squeren, A. M.: 1963, Ann. Astrophys. 26, 97.

    Google Scholar 

  • Melrose, D. B.: 1974, Australian J. Phys. 21, 271.

    Google Scholar 

  • Melrose, D. B.: 1980a, Solar Phys. 67, 357.

    Google Scholar 

  • Melrose, D. B.: 1980b, Space Sci. Rev. 26, 3.

    Google Scholar 

  • Melrose, D. B.: 1980c, Plasma Astrophysics, Vol. 2, Gordon and Breach Science Publishers, New York.

    Google Scholar 

  • Melrose, D. B. and Brown, J. C.: 1976, Monthly Notices Roy. Astron. Soc. 176, 15.

    Google Scholar 

  • Melrose, D. B. and White, S. M.: 1979, Proc. Astron. Soc. Australia 3, 369.

    Google Scholar 

  • Shapiro, V. D. and Shevchenko, V. I.: 1988, Astrophys. Space Phys. Rev. 6, 425.

    Google Scholar 

  • Sitenko, A. G.: 1982, Fluctuations of Non-Linear Wave Interactions in Plasmas, Pergamon Press, New York.

    Google Scholar 

  • Spicer, S. D., Benz, A. O., and Huba, J. D.: 1981, Astron. Astrophys. 105, 221.

    Google Scholar 

  • Thejappa, G.: 1987, Solar Phys. 111, 45.

    Google Scholar 

  • Thejappa, G., Gopalswamy, N., and Kundu, M. R.: 1990, Solar Phys. 127, 165.

    Google Scholar 

  • Vaisberg, O. L., Galeev, A. A., Zastenker, G. N., Klimov, S. I., Norzdrachev, M. N., Sagdeev, R. Z., Sokolov, A., and Shapiro, A.: 1983, Soviet Phys. JETP 58, 716.

    Google Scholar 

  • Wentzel, D. G.: 1981, Astron. Astrophys. 100, 20.

    Google Scholar 

  • Wentzel, D. G.: 1985, Astrophys. J. 296, 278.

    Google Scholar 

  • Wentzel, D. G.: 1986, Solar Phys. 103, 141.

    Google Scholar 

  • White, S. M., Kundu, M. R., and Szabo, A.: 1986, Solar Phys. 107, 135.

    Google Scholar 

  • Zaitsev, V. V. and Stepanov, A. V.: 1975, Astron. Astrophys. 45, 135.

    Google Scholar 

  • Zaitsev, V. V. and Stepanov, A. V.: 1983, Solar Phys. 88, 297.

    Google Scholar 

  • Zheleznyakov, V. V.: 1977, Electromagnetic Waves in Cosmic Plasma, Generation and Propagation, Nauka, Moscow (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Indian Institute of Astrophysics, Bangalore 560034, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thejappa, G. A self-consistent model for the storm radio emission from the Sun. Sol Phys 132, 173–193 (1991). https://doi.org/10.1007/BF00159137

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159137

Keywords

Navigation