User modelling and user adapted interaction in an intelligent tutoring system

  • Hyacinth S. Nwana
Article

Abstract

User modelling and user-adapted interaction are crucial to the provision of true individualised instruction, which intelligent tutoring systems strive to achieve. This paper presents how user (student) modelling and student adapted instruction is achieved in FITS, an intelligent tutoring system for the fractions domain. Some researchers have begun questioning both the need for detailed student models as well as the pragmatic possibility of building them. The key contributions of this paper are in its attempt to rehabilitate student modelling/adaptive tutoring within ITSs and in FITS's practical use of simple techniques to realise them with seemingly encouraging results; some illustrations are given to demonstrate the latter.

Key words

student modelling tutoring strategies intelligent tutoring systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. R. D. F. Boyle, and B. J. Reiser: 1985a, ‘Intelligent Tutoring Systems’. Science 228, 456–462.Google Scholar
  2. Barr, A. and E. A. Feigenbaum: 1982, The Handbook of Artificial Intelligence 2. Los Altos: Kaufmann.Google Scholar
  3. Brown, J. S. and R. R. Burton: 1978, ‘Diagnostic Models for Procedural Bugs in Basic Mathematical Skills’. Cognitive Science 2, 155–192.Google Scholar
  4. Burns, H. L. and C. G. Capps: 1988, ‘Foundations of Intelligent Tutoring Systems: An Introduction’. In: M. C. Polson and J. J. Richardson (eds.), Foundations of Intelligent Tutoring Systems. London: Lawrence Erlbaum, pp. 1–19.Google Scholar
  5. Burton, R.: 1982, ‘Diagnosing Bugs in a Simple Procedural Skill’. In: D. H. Sleeman and J. S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press, pp. 157–183.Google Scholar
  6. Carbonell, J. R. Michalski, and T. Mitchell: 1983, ‘An Overview of Machine Learning’. In: R. S. Michalski J. G. Carbonell, and T. M. Mitchell (eds.), Machine Learning. Palo Alto: Tioga, pp. 3–23.Google Scholar
  7. Ford, L.: 1987a, ‘Teaching Strategies and Tactics in Intelligent Computer Aided Instruction’. Artificial Intelligence Review 1, 201–215.Google Scholar
  8. Ford, L.: 1987b, ‘Anatomy of an ICAI System’. In: R. Lewis and E. D. Tagg (eds.), Trends in Computer Assisted Instruction. London: Blackwell Scientific, pp. 22–31.Google Scholar
  9. Ford, L.: 1988, ‘The Appraisal of an ICAI System’. In: J. A. Self (ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London: Chapman and Hall, pp. 109–123.Google Scholar
  10. Gilmore, D. and J. A. Self: 1988, ‘The Application of Machine Learning to Intelligent Tutoring Systems’. In: J. A. Self (ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London: Chapman and Hall, pp. 179–196.Google Scholar
  11. Goldstein, I. P.: 1982, ‘The Genetic Graph: A Representation for the Evolution of Procedural Knowledge’. In: D. H. Sleeman and J. S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press, pp. 51–77.Google Scholar
  12. Hartley, J. R. and D. H. Sleeman: 1973, ‘Towards More Intelligent Teaching Systems’. International Journal of Man-Machine Studies 5, 215–236.Google Scholar
  13. Mandl, H. and A. Lesgold (eds.): 1988, Learning Issues for Intelligent Tutoring Systems. London: Springer-Verlag.Google Scholar
  14. Nwana, H. S.: 1989, ‘An Iterative-Style Approach to Constructing Intelligent Tutoring Systems in Mathematics’. Ph.D. Thesis, Aston University, Birmingham, England.Google Scholar
  15. Nwana, H. S. and P. Coxhead: 1988, ‘Towards an Intelligent Tutoring System for a “Complex” Mathematical Domain’. Expert Systems 5(4), 290–299.Google Scholar
  16. Nwana, H. S. and P. Coxhead: 1989, ‘Fraction Bugs: Explanations, Bug Theories and Implications on Intelligent Tutoring Systems’. Cognitive Systems 2(3), 275–289.Google Scholar
  17. Nwana H. S.: 1990a, ‘A Brief Overview of FITS: A Fraction Intelligent Tutoring System’. In: Proceedings of the IEE Colloquium on Intelligent Tutoring Systems. Savoy Place, London, 20 November.Google Scholar
  18. Nwana, H. S.: 1990b, ‘The Anatomy of FITS: A Mathematic Tutor’. Intelligent Tutoring Media 1(2), 83–95.Google Scholar
  19. Nwana, H. S.: 1990c, ‘Intelligent Tutoring Systems: An Overview’. Artificial Intelligence Review 4(4), 251–277.Google Scholar
  20. Oliver, W. P.: 1973, ‘Computer-assisted mathematics instruction for community college students’. International Journal of Man-Machine Studies 5, 385–395.Google Scholar
  21. O'Shea, T.: 1982a, ‘A Self-Improving Quadratic Tutor’. In: D. H. Sleeman and J. S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press, pp. 283–307.Google Scholar
  22. O'Shea, T.: 1982b, ‘Intelligent Systems in Education’. In: D. Michie (ed.), Introductory Readings in Expert Systems. London: Gordon and Breach, pp. 141–176.Google Scholar
  23. O'Shea, T. and J. Self: 1983, Learning and Teaching with Computers. Sussex: Harvester Press.Google Scholar
  24. O'Shea, T., R. Bornat, and B. Du Boulay et al.: 1984, ‘Tools for creating intelligent computer tutors’. In: Elithorn and R. Beneiji (eds.), Artificial and Human Intelligence. North-Holland: Elsevier, pp. 181–199.Google Scholar
  25. Rich, E.: 1979, ‘User Modelling Via Stereotypes’. Cognitive Science 3, 329–354.Google Scholar
  26. Ross, P. J. Jones, and P. Millington: 1987, ‘User Modelling in Intelligent Teaching and Tutoring’. In: R. Lewis and E. D. Tagg (eds.), Trends in Computer Assisted Instruction. London: Blackwell, pp. 32–44.Google Scholar
  27. Self, J. A.: 1974, ‘Student Models in Computer-Aided Instruction’. International Journal of Man-Machine Studies 6, 261–276.Google Scholar
  28. Self, J. A.: 1985, ‘Intelligent Computer Assisted Instruction’. Paper presented at the ICAI Spring Seminar, Logica Cambridge Ltd, Cambridge.Google Scholar
  29. Self, J. A.: 1987a, ‘The Application of Machine Learning to Student Modelling’. In: R. W. Lawler and M. Yazdani (eds.), Artificial Intelligence and Education 1: Learning Environments and Tutoring Systems. Norwood: Ablex, pp. 267–280.Google Scholar
  30. Self J. A.: 1987b, ‘Realism in Student Modelling’. Alvey-IKBS Research Workshop Tutoring Systems. University of Exeter.Google Scholar
  31. Self, J. A. (ed.): 1988a, Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London, Chapman and Hall.Google Scholar
  32. Self J. A.: 1988b, ‘Bypassing the Intractable Problem of Student Modelling’. Proceedings of the 1st International Conference on Intelligent Tutoring Systems. Montreal, Canada, pp. 18–24.Google Scholar
  33. Self, J. A.: 1988c, ‘Student Models: What Use Are They?’. In: P. Ercoli and R. Lewis (eds.), Artificial Intelligence Tools in Education. Amsterdam: North-Holland, pp. 73–86.Google Scholar
  34. Sleeman D.: 1982, ‘Inferring (Mal) Rules from Pupils' Protocols’. Proceedings of the European Conference on Artificial Intelligence. pp. 160–164.Google Scholar
  35. Sleeman, D. H.: 1985, ‘UMFE: A User Modelling Front-End Subsystem’. International Journal of Man-Machine Sudies 23, 71–88.Google Scholar
  36. Tennyson, R. D. and Park, O-C.: 1980, ‘The Teaching of Concepts: A Review of Instructional Design Research Literature’. Review of Educational Research 50(1), 55–70.Google Scholar
  37. Tobias, S.: 1985, ‘Computer Assisted Instruction’. In: M. C. Wang and H. J. Waldberg (eds.), Adapting Instruction to Individual Differences. Berkeley, CA: McCutchan, pp. 135–159.Google Scholar
  38. Vanlehn, K.: 1987, ‘Learning One Subprocedure Per Lesson’. Artificial Intelligence 31(1), 1–40.Google Scholar
  39. Vanlehn, K.: 1988b, ‘Student Modelling’. In: M. C. Polson and J. J. Richardson (eds.), Foundations of Intelligent Tutoring Systems. London: Lawrence Erlbaum, pp. 55–78.Google Scholar
  40. Wachsmuth, I.: 1988, ‘Modelling the Knowledge Base of Mathematical Learners: Situation - Specific and Situation-Nonspecific Knowledge’. In: H. Mandl and A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems. London: Springer-Verlag, pp. 63–79.Google Scholar
  41. Wenger, E.: 1987, Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann.Google Scholar
  42. Yazdani, M.: 1986a, ‘Intelligent Tutoring Systems Survey’. Artificial Intelligence Review 1, 43–52.Google Scholar
  43. Yazdani, M.: 1987, ‘Intelligent Tutoring Systems: An Overview’. In: R. Lawler and M. Yazdani (eds.), Artificial Intelligence and Education 1. NJ: Ablex, pp. 182–201.Google Scholar
  44. Zissos, A. Y. and, Witten, I. H.: 1985, ‘User Modelling for a Computer Coach: A Case Study’. International Journal of Man-Machine Sudies 23, 729–750.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Hyacinth S. Nwana
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations