Fe, Al, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input

Abstract

Comparisons among 4 peatland sites representing a gradient of increasing Fe, Al, Mn, and S loading revealed significant accumulation of total Fe, Al, and S, but not Mn, in surface (0 to 20 cm deep) peat along the gradient. Iron and Al accumulation were contributed mainly by organically bound fractions, with oxides contributing to a lesser extent. Although SO4 2− and Fe sulfides showed significant increases in concentration along the gradient, most of the accumulation of total S was contributed by organic, rather than inorganic S. Laboratory studies of Fe2+ adsorption by peat indicated that increasing the pH of added Fe2+ solutions (pH values of 3, 4, 5, and 6) did not significantly affect Langmuir equation estimates of either maximum Fe2+ adsorption capacity or the affinity of peat for Fe2+. Regardless of the pH of the added Fe2+ solutions, final solution pH values were relatively uniform, averaging about 3.4, reflecting a considerable bufferring capacity of Sphagnum peat. Factors affecting the accumulation of metals and S in peat remain topics for further investigation.

This is a preview of subscription content, log in to check access.

References

  1. Aizenshtat, Z., Stoler, A., Cohen, Y., and Nielsen, H.: 1981, ‘The Geochemical Sulfur Enrichment of Recent Organic Matter by Polysulfides in the Solar Lake (Sinai)’, in Proceedings of the 5th International Organic Geochemistry Congress, Bergen, Norway.

  2. Bell, P. R.: 1959, J. Ecol. 47, 351.

    Google Scholar 

  3. Blume, H. P. and Schwertmann, U.: 1969, Soil Sci. Soc. Am. Proc. 33, 438.

    Google Scholar 

  4. Boelter, D. H.: 1965, Soil Sci. 100, 227.

    Google Scholar 

  5. Braekke, F. H.: 1981, Rep. Norwegian For. Res. Inst. 36, 1.

    Google Scholar 

  6. Brown, K. A.: 1985, Soil Biol. Biochem. 17, 39.

    Google Scholar 

  7. Bunzl, K., Schmidt, W. and Sansoni, B.: 1976, J. Soil Sci. 27, 32.

    Google Scholar 

  8. Burris, J. E. (ed.): 1984, Treatment of Mine Drainage by Wetlands, Contribution No. 264, Department of Biology, The Pennsylvania State University, University Park

    Google Scholar 

  9. Casagrande, D. J., Indowu, G., Friedman, A., Rickert, P., Siefert, K., and Schlenz, D.: 1979, Nature 282, 599.

    Google Scholar 

  10. Chaney, R. L. and Hundemann, P. T.: 1979, J. Water Pollut. Control Fed. 51, 17.

    Google Scholar 

  11. Christophersen, N. and Wright, R. F.: 1981, Water Resources Res. 17, 377.

    Google Scholar 

  12. Clymo, R. S.: 1963, Ann. Bot., N.S. 27, 309.

    Google Scholar 

  13. Conover, W. J.: 1980, Practical Nonparametric Statistics, John Wiley and Sons, New York.

    Google Scholar 

  14. Coupal, B. and Lalancette, J.-M.: 1976, Water Res. 10, 1071.

    Google Scholar 

  15. Crisp, D. T.: 1966, J. Appl. Ecol. 3, 327.

    Google Scholar 

  16. Damman, A. W. H.: 1978, Oikos 30, 480.

    Google Scholar 

  17. Ferguson, P. and Lee, J. A.: 1980, Environ. Pollut, Ser. A 21, 59.

    Google Scholar 

  18. Ferguson, P. and Lee, J. A.: 1984, J. Bryol. 12, 579.

    Google Scholar 

  19. Ferguson, P., Lee, J. A., and Bell, J. N. B.: 1978, Environ. Pollut. 16, 151.

    Google Scholar 

  20. Ferguson, P., Robinson, R. N., Press, M. C., and Lee, J. A.: 1984, J. Bryol. 13, 107.

    Google Scholar 

  21. Gorham, E., Bayley, S. E., and Schindler, D. W.: 1984, Can. J. Fish. Aquat. Sci. 41, 1256.

    Google Scholar 

  22. Heinselman, M. L.: 1963, Ecol. Monog. 33, 327.

    Google Scholar 

  23. Hollander, M. and Wolfe, D. A.: 1978, Nonparametric Statistical Methods, Elsevier Scientific Publishing, Amsterdam.

    Google Scholar 

  24. Johnson, D. W. and Henderson, G. S.: 1979, Soil Sci 128, 34.

    Google Scholar 

  25. Kleinmann, R. L. P., Tiernan, T. O., Solch, J. G., and Harris, R. L.: 1983, ‘A Low-Cost, Low Maintenance Treatment System for Acid Mine Drainage’, in Symposium on Surface Mining, Hydrology, Sedimentology, and Reclamation, University of Kentucky, Lexington.

    Google Scholar 

  26. Korpijaakko, M. and Radforth, N. W.: 1972, ‘Studies on the Hydraulic Conductivity of Peat’, in Proceedings of the Fourth International Peat Congress, Helsinki, Finland.

  27. Krauskopf, K. B.: 1979, Introduction to Geochemistry, McGraw-Hill, New York.

    Google Scholar 

  28. Likens, G. E. and Bormann, F. H.: 1970, Chemical Analyses of Plant Tissues from the Hubbard Brook Ecosystem in New Hampshire, Yale Univ. Sch. For. Bull. No. 79.

  29. McKeague, J. A., Brydon, J. E., and Miles, N. N.: 1971, Soil Sci. Soc. Am. Proc. 35, 33.

    Google Scholar 

  30. Moore, P. D. and Bellamy, D. J.: 1974, Peadands, Springer-Verlag, New York.

    Google Scholar 

  31. National Atmospheric Deposition Program: 1983, NADP Report: Annual Summary for 1982, National Resource Ecology Laboratory, Colorado State University, Fort Collins.

    Google Scholar 

  32. Odelein, M., Selmer-Olsen, A. R., and Haddeland, I.: 1975, Acta Agric. Scand. 25, 161.

    Google Scholar 

  33. Rubin, A. J. and Mercer, D. L.: 1981, ‘Adsorption of Free and Complexed Metals from Solution by Activated Carbon’, in M. A. Anderson and A. J. Rubin (eds.), Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

  34. Skene, M.: 1915, Ann. Bot. 29, 65.

    Google Scholar 

  35. Smith, E. F., MacCarthy, P., Yu, T. C., and Mark, H. B., Jr.: 1977, J. Water Pollut. Control Fed. 49, 633.

    Google Scholar 

  36. Statistical Analysis System: 1982, SAS Users Guide, SAS Institute, Cary, North Carolina.

    Google Scholar 

  37. Stone, R. W.: 1984, ‘The Presence of Iron- and Manganese-Oxidizing Bacteria in Natural and Simulated Bogs’, in J. E. Burris (ed.), Treatment of Mine Drainage by Wetlands, Contribution No. 264, Department of Biology, The Pennsylvania State University, University Park.

    Google Scholar 

  38. Tarleton, A. L., Lang, G. E., and Wieder, R. K.: 1984, ‘Removal of Iron from Acid Mine Drainage by Sphagnum Peat: Results from Experimental Laboratory Microcosms’, in D. H. Graves (ed.), Symposium on Surface Mining, Hydrology, Sedimentology, and Reclamation, University of Kentucky, Lexington.

    Google Scholar 

  39. United States Department of Agriculture: 1972, Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples, USDA Soil Survey Investigations Report No. 1, Soil Conservation Service, Washington, D.C.

    Google Scholar 

  40. Verry, E. S. and Timmons, D. R.: 1982, Ecol. 63, 1456.

    Google Scholar 

  41. Wieder, R. K.: 1982, ‘Biogeochemical Relationships in Sphagnum-dominated Wetlands in West Virginia’, Ph.D. Dissertation, West Virginia University, Morgantown.

    Google Scholar 

  42. Wieder, R. K. and Lang, G. E.: 1982, ‘Modification of Acid Mine Drainage in a Freshwater Wetland’, in B. R. McDonald (ed.), Proceedings of the Symposium on Wetlands of the Unglaciated Appalachian Region, West Virginia University, Morgantown.

    Google Scholar 

  43. Wieder, R. K. and Lang, G. E.: 1984, Water, Air, and Soil Pollut. 23, 381.

    Google Scholar 

  44. Wieder, R. K. and Lang, G. E.: 1985, ‘Sulfur Biogeochemistry in an Appalachian Peatland’, presented at the Ecological Society of America/American Society of Limnologists and Oceanographers Meeting, Minneapolis, Minnesota.

  45. Wieder, R. K., Lang, G. E., and Granus, V. A.: 1985a, Limnol. Oceanogr. 30, 1109.

    Google Scholar 

  46. Wieder, R. K., Lang, G. E., and Whitehouse, A. E.: 1985b, ‘Metal Removal in Sphagnum-dominated Wetlands: Experience with a Man-made Wetland System’, in R. P. Brooks (ed.), Wetlands and Water Management on Mined Lands, The Pennsylvania State University, University Park.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelman Wieder, R., Lang, G.E. Fe, Al, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input. Water Air Soil Pollut 29, 309–320 (1986). https://doi.org/10.1007/BF00158762

Download citation

Keywords

  • Oxide
  • Iron
  • Sulfur
  • Sulfide
  • Adsorption Capacity