Fisher ideal output, input, and productivity indexes revisited

Abstract

A productivity index for a firm is generally defined as an output index divided by an input index. The first part of the paper uses the test or axiomatic approach to index number theory in order to determine the appropriate functional form for the output and input indexes. It is found that the Fisher ideal index satisfies 21 reasonable tests and is uniquely characterized by a subset of these tests. In the remainder of the paper, the economic approach to productivity indexes introduced by Caves, Christensen, and Diewert is adopted and, again, a strong justification for the Fisher productivity index is provided.

This is a preview of subscription content, access via your institution.

References

  1. Balk, B.M. (1985). “A Simple Characterization of Fisher's Price Index,” Statistiche Hefte 26, 59–63.

    Google Scholar 

  2. Blackorby, C., D. Primont, and R.R. Russell. (1978). Duality, Separability and Functional Structure: Theory and Economic Applications. New York: Elsevier North-Holland.

    Google Scholar 

  3. Bowley, A.L. (1901). Elements of Statistics. Westminster: P.S. King.

    Google Scholar 

  4. Bowley, A.L. (1921). “An Index of the Physical Volume of Production,” Economic Journal 31, 196–205.

    Google Scholar 

  5. Bowley, A.L. (1923). “Review of the Making of Index Numbers,” Economic Journal 33, 90–94.

    Google Scholar 

  6. Caves, D.W., L.R. Christensen, and W.E. Diewert. (1982). “The Economic Theory of Index Numbers and the Measurement of Input, Output and Productivity,” Econometrica 50, 1393–1414.

    Google Scholar 

  7. Christensen, L.R., and D.W. Jorgenson. (1970). “U.S. Real Product and Real Factor Input, 1929–1967,” Review of Income and Wealth 16, 19–50.

    Google Scholar 

  8. Christensen, L.R., D.W. Jorgenson, and L.J. Lau. (1971) “Conjugate Duality and the Transcendental Logarithmic Production Function,” Econometrica 39, 255–256.

    Google Scholar 

  9. Davies, G.R. (1924). “The Problem of a Standard Index Number Formula,” Journal of the American Statistical Association 19, 180–188.

    Google Scholar 

  10. Denny, M. (1980). “Comment on Aggregation Problems in the Measurement of Capital.” In Dan Usher (ed.), The Measurement of Capital, pp. 528–538. Chicago: University of Chicago Press.

    Google Scholar 

  11. Diewert, W.E. (1973). “Functional Forms for Profit and Transformation Functions,” Journal of Economic Theory 6, 284–316.

    Google Scholar 

  12. Diewert, W.E. (1974). “Applications of Duality Theory.” In M.D. Intriligator and D.A. Kendrick (eds.), Frontiers of Quantitative Economics, Vol. II, pp. 106–171. Amsterdam: North-Holland.

    Google Scholar 

  13. Diewert, W.E. (1976). “Exact and Superlative Index Numbers,” Journal of Econometrics 4, 115–145.

    Google Scholar 

  14. Diewert, W.E. (1980). “Aggregation Problems in the Measurement of Capital.” In Dan Usher (ed.), The Measurement of Capital, pp. 433–528. Chicago: University of Chicago Press.

    Google Scholar 

  15. Diewert, W.E. (1982). “Duality Approaches to Microeconomic Theory.” In Handbook of Mathematical Economics, Vol. II, pp. 535–599. K.J. Arrow and M.D. Intriligator (eds.), Amsterdam: North-Holland.

    Google Scholar 

  16. Diewert, W.E. (1983). “The Theory of the Output Price Index and the Measurement of Real Output Change.” W.E. Diewert and C. Montmarquette (eds.). In Price Level Measurement, pp. 1049–1113. Ottawa: Statistics Canada.

    Google Scholar 

  17. Divisia, F. (1926). L'indice monétaire et la théorie de la monnaie, Paris: Société anonyme du Recueil Sirey.

    Google Scholar 

  18. Edgeworth, F.Y. (1925). Papers Relating to Political Economy, Vol. 1. New York: Burt Franklin.

    Google Scholar 

  19. Eichhorn, W. (1976). “Fisher's Tests Revisited,” Econometrica 44, 247–256.

    Google Scholar 

  20. Eichhorn, W. (1978). Functional Equations in Economics. Reading, MA: Addison-Wesley.

    Google Scholar 

  21. Eichhorn, W., and J. Voeller. (1976). Theory of the Price Index. Berlin: Springer-Verlag.

    Google Scholar 

  22. Fisher, F.M. and K. Shell. (1972). The Economic Theory of Price Indexes. New York: Academic Press.

    Google Scholar 

  23. Fisher, I. (1911). The Purchasing Power of Money. London: Macmillan.

    Google Scholar 

  24. Fisher, I. (1921). “The Best Form of Index Number,” Journal of the American Statistical Association 17, 533–537.

    Google Scholar 

  25. Fisher, I. (1922). The Making of Index Numbers. Boston: Houghton Mifflin.

    Google Scholar 

  26. Fisher, W.C. (1913). “The Tabular Standard in Massachusetts History,” Quarterly Journal of Economics 27, 417–451.

    Google Scholar 

  27. Frisch, R. (1930). “Necessary and Sufficient Conditions Regarding the Form of an Index Number Which Shall Meet Certain of Fisher's Tests,” American Statistical Association Journal 25, 397–406.

    Google Scholar 

  28. Frisch, R. (1936). “Annual Survey of General Economic Theory: The Problem of Index Numbers,” Econometrica 4, 1–39.

    Google Scholar 

  29. Funke, H. (1988). “Mean Value Properties of the Weights of Linear Price Indices.” In W. Eichhorn (ed.) Measurement in Economics: Theory and Applications of Economic Indices, pp. 99–115. Heidelberg: Physica-Verlag.

    Google Scholar 

  30. Funke, H., and J. Voeller. (1978). “A Note on the Characterization of Fisher's Ideal Index.” In W. Eichhorn, R. Henn, O. Opitz, and R.W. Shephard (eds.), Theory and Applications of Economic Indices, pp. 177–181. Würzburg: Physica-Verlag.

    Google Scholar 

  31. Funke, H., and J. Voeller. (1979). “Characterization of Fisher's ‘Ideal Index’ by Three Reversal Tests,” Statistiche Hefte 20, 54–60.

    Google Scholar 

  32. Gorman, W.M. (1968). “Measuring the Quantities of Fixed Factors.” In J.N. Wolfe (ed.), Value, Capital and Growth: Papers in Honour of Sir John Hicks, pp. 141–172. Chicago: Aldine Publishing Co.

    Google Scholar 

  33. Hicks, J.R. (1940). “The Valuation of the Social Income,” Economica 7, 105–124.

    Google Scholar 

  34. Hicks, J.R. (1961). “Measurement of Capital in Relation to the Measurement of Other Economic Aggregates.” In F.A. Lutz and D.C. Hague (eds.), The Theory of Capital. London: Macmillan.

    Google Scholar 

  35. Hicks, J. (1981). Wealth and Welfare. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  36. Hotelling, H. (1932.) “Edgeworth's Taxation Paradox and the Nature of Demand and Supply Functions,” Journal of Political Economy 40, 577–616.

    Google Scholar 

  37. Jevons, W.S. (1884). Investigations in Currency and Finance. London: Macmillan.

    Google Scholar 

  38. Jorgenson, D.W., and Z. Griliches. (1967). “The Explanation of Productivity Change,” Review of Economic Studies 34, 249–283.

    Google Scholar 

  39. Jorgenson, D.W., and Z. Griliches. (1972). “Issues in Growth Accounting: A Reply to Edward F. Dennison,” Survey of Current Businesses 55:5, Part II, 65–94.

  40. Jorgenson, D.W., and M. Nishimizu. (1978). “U.S. and Japanese Economic Growth, 1952–1974: An International Comparison,” Economic Journal 88, 707–726.

    Google Scholar 

  41. Laspeyres, E. (1871). “Die Berechnmung einer mittleren Waarenpreissteigerung,” Jahrbücher für Nationalökonomie und Statistik 16, 296–314.

    Google Scholar 

  42. Lowe, J. (1823). The Present State of England in Regard to Agriculture, Trade and Finance, Second Edition. London: Longman, Hurst, Rees, Orme and Brown.

    Google Scholar 

  43. Malmquist, S. (1953). “Index Numbers and Indifference Surfaces,” Trabajos de Estatistica 4, 209–242.

    Google Scholar 

  44. Mark, J.A., and W.H. Waldorf. (1983). “Multifactor Productivity: A New BLS Measure,” Monthly Labor Review (December), 3–15.

  45. Marshall, A. (1887). “Remedies for Fluctuations of General Prices,” Contemporary Review 51, 355–375.

    Google Scholar 

  46. McFadden, D. (1978). “Cost, Revenue and Profit Functions,” In M. Fuss and D. McFadden (eds.), Production Economics: A Dual Approach to Theory and Applications, Vol. 1, pp. 3–109. Amsterdam: North-Holland.

    Google Scholar 

  47. Moorsteen, R.H. (1961). “On Measuring Productive Potential and Relative Efficiency,” Quarterly Journal of Economics 75, 451–467.

    Google Scholar 

  48. Paasche, H. (1874). “Uber die Preisentwicklung der letzten Jahre nach den Hamburger Börsennotirungen,” Jahrbücher für Nationalökonomie und Statistik 23, 168–178.

    Google Scholar 

  49. Pierson, N.G. (1895). “Index Numbers and Appreciation of Gold,” The Economic Journal 5, 329–335.

    Google Scholar 

  50. Pierson, N.G. (1896). “Further Considerations on Index-Numbers,” Economic Journal 6, 127–131.

    Google Scholar 

  51. Pigou, A.C. (1912). Wealth and Welfare. London: Macmillan and Company.

    Google Scholar 

  52. Samuelson, P.A. (1953). “Prices of Factors and Goods in General Equilibrium,” Review of Economic Studies, 21, 1–20.

    Google Scholar 

  53. Samuelson, P.A., and S. Swamy. (1974). “Invariant Economic Index Numbers and Canonical Duality: Survey and Synthesis,” American Economic Review 64, 566–593.

    Google Scholar 

  54. Sato, K. (1980). “The Price Reversal Test and Economic Indexes,” Statistiche Hefte 21, 127–130.

    Google Scholar 

  55. Scrope, G.P. (1833). Principles of Political Economy. London: Longman, Rees, Orme, Brown, Green, and Longman.

    Google Scholar 

  56. Sidgwick, H. (1883). The Principles of Political Economy. London: Macmillan.

    Google Scholar 

  57. Solow, R.M. (1957). “Technical Change and the Aggregate Production Function,”Review of Economics and Statistics 39, 312–320.

    Google Scholar 

  58. Tinbergen, J. (1942). “Zur Theorie der langfristigen Wirtschaftsentwicklung,” Weltwirtschaftliches Archiv 55, 511–549.

    Google Scholar 

  59. Törnqvist, L. (1936). “The Bank of Finland's Consumption Price Index,” Bank of Finland Monthly Bulletin 10, 1–8.

    Google Scholar 

  60. Vogt, A. (1978). “Der Wertindextreue-Test und eine Vereingachung des Index problems,” Statistiche Hefte 19, 131–139.

    Google Scholar 

  61. Vogt, A. (1980). “Der Zeit und der Faktorumkehrtests als ‘Finders of Test’,” Statistiche Hefte 21, 66–71.

    Google Scholar 

  62. Walsh, C.M. (1901). The Measurement of General Exchange Value. New York: Macmillan.

    Google Scholar 

  63. Walsh, C.M. (1921). “The Best Form of Index Number: Discussion,” Quarterly Publication of the American Statistical Association 17 (March), 537–544.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

The editor of this paper was N.R. Adam.

This research was supported by a Strategic Grant from the Social Science and Humanities Research Council of Canada. The author is indebted to Shelley Hey for typing assistance.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diewert, W.E. Fisher ideal output, input, and productivity indexes revisited. J Prod Anal 3, 211–248 (1992). https://doi.org/10.1007/BF00158354

Download citation

Keywords

  • Functional Form
  • Number Theory
  • Fisher Productivity
  • Productivity Index
  • Economic Approach