Skip to main content
Log in

Force and energy balance in the transition region network

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Two-dimensional numerical models of the solar transition region are calculated using an inverse coordinates method which attains pressure equilibrium between the network magnetic field and the external comparatively field-free gas. If A(y, z) is the magnetic potential (a scalar in 2D), which is constant on field lines, the method involves interchanging dependent and independent variables to obtain a quasi-linear PDE for y(A, z), which is solved iteratively. The advantage of this approach is that magnetic field lines, including any magnetic interface, become coordinate lines, thereby simplifying the energy equation and free boundary problem. In order to examine the effects of self-consistent geometry on the thermal structure of the transition region network, we calculate four models. The energy balance includes the effects of radiation, conduction, and enthalpy flux. It is confirmed that the lower branch of the emission measure curve cannot be explained within the single fluxtube model if the classical Spitzer thermal conductivity is used. However, by including a turbulent thermal conductivity as proposed by Cally (1990a), transition region models are obtained for which the resulting emission measure curves exhibit the correct behaviour, including the observed turn-up below about 200 000 K. In summary, the broad conclusions of previous non-turbulent 2D models are confirmed, but most importantly, the turbulent conductivity hypothesis tested in 1D by Cally is shown to produce excellent agreement with observations in the more realistic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antiochos, S. K. and Noci, G.: 1986, Astrophys. J. 301, 440.

    Google Scholar 

  • Ames, W. F.: 1977, Numerical Methods for Partial Differential Equations, 2nd ed., Academic Press, New York.

    Google Scholar 

  • Athay, R. G.: 1981, Astrophys. J. 249, 340.

    Google Scholar 

  • Athay, R. G.: 1982, Astrophys. J. 263, 982.

    Google Scholar 

  • Athay, R. G.: 1986, Astrophys. J. 308, 975.

    Google Scholar 

  • Athay, R. G.: 1988, Solar Phys. 116, 223.

    Google Scholar 

  • Athay, R. G. and Dere, K. P.: 1990, Astrophys. J. (to appear).

  • Cally, P. S.: 1990a, Astrophys. J. (to appear).

  • Cally, P. S.: 1990b, J. Comp. Phys. (submitted).

  • Doschek, G. A., Feldman, U., and Bohlin, J. D.: 1976, Astrophys. J. 205, L177.

    Google Scholar 

  • Dowdy, J. F., Emslie, A. G., and Moore, R. L.: 1987, Solar Phys. 112, 255.

    Google Scholar 

  • Dowdy, J. F., Rabin, D., and Moore, R. L.: 1986, Solar Phys. 105, 35.

    Google Scholar 

  • Fiedler, R. A. S.: 1989, Ph.D. Thesis, Monash University.

  • Gabriel, A. H.: 1976, Phil. Trans. Roy. Soc. London A281, 339.

    Google Scholar 

  • Low, B. C.: 1975, Astrophys. J. 197, 251.

    Google Scholar 

  • McClymont, A. N. and Canfield, R. C.: 1983, Astrophys. J. 265, 497.

    Google Scholar 

  • Moffatt, H. K.: 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, Cambridge.

    Google Scholar 

  • Owocki, S. P. and Canfield, R. C.: 1986, Astrophys. J. 300, 420.

    Google Scholar 

  • Parker, E. N.: 1979, Cosmical Magnetic Fields, Oxford University Press, Oxford.

    Google Scholar 

  • Pneuman, G. W. and Kopp, R. A.: 1978, Solar Phys. 57, 49.

    Google Scholar 

  • Pneuman, G. W. and Orrall, F. Q.: 1986, in P. A. Sturrock et al. (eds.), Physics of the Sun, Ch. 10, Vol. II, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Raymond, J. C. and Doyle, J. G.: 1981, Astrophys. J. 247, 686.

    Google Scholar 

  • Roberts, B.: 1984, Adv. Space Res. 4, 17.

    Google Scholar 

  • Roberts, B. and Webb, A. R.: 1978, Solar Phys. 56, 5.

    Google Scholar 

  • Rosner, R., Low, B. C., and Holzer, T. E.: 1986, in P. A. Sturrock et al. (eds.), Physics of the Sun, Ch. 11, Vol. II, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Google Scholar 

  • Roussel-Dupré, R.: 1980, Solar Phys. 68, 243.

    Google Scholar 

  • Shoub, E. C.: 1983, Astrophys. J. 266, 339.

    Google Scholar 

  • Steiner, G., Pneuman, G. W., and Stenflo, J. O.: 1986, Astron. Astrophys. 170, 126.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.

    Google Scholar 

  • Woods, D. T.: 1986, Ph.D. Thesis, Univ. of Colorado.

  • Zolcinski, M.-C. S., Antiochos, S. K., Stern, R. A., and Walker, A. B. C.: 1982, Astrophys. J. 258, 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, R.A.S., Cally, P.S. Force and energy balance in the transition region network. Sol Phys 126, 69–88 (1990). https://doi.org/10.1007/BF00158299

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00158299

Keywords

Navigation