Skip to main content
Log in

Light hydrocarbon production in freshwater marsh soil as influenced by soil redox conditions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The potential role of wetland soil redox condition to global atmospheric light hydrocarbon budget was evaluated. The effect of soil redox condition on gaseous hydrocarbon production in freshwater marsh soil was studied. Soil from a Mississippi River Deltaic plain freshwater marsh was equilibrated under controlled redox levels ranging from +550 mV to −170 mV The production of methane, ethane, propane, butane, ethylene, propylene and isobutane as influenced by redox condition was quantified. The production of all hydrocarbon gases increased as soil redox potential decreased. A soil redox value of -100 mV was critical for methane production. Isobutane production was also sensitive to redox potential, with emission occurring only at soil redox levels below 0 mV Results show the significance of degree of soil reduction in production or emission of light hydrocarbons in wetland soil or sediment. In addition to methane significant amounts of non-methane hydrocarbons are produced in wetland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altshuller, P.: 1983, Atm. Environ. 17, 2131.

    Google Scholar 

  • Arshad, M. and Frankenberger, W.T., Jr.: 1989, Soil Biol. Biochem. 21, 633.

    Google Scholar 

  • Arshad, M. and Frankenberger, W.T., Jr.: 1990, Soil Sci. Am. J. 54, 1026.

    Google Scholar 

  • Bhatnagar, L.M., Jain, M.K., Aubert, J.P., and Zeikus, J.G.: 1984, Appl. Environ. Microbiol. 48, 785.

    Google Scholar 

  • Bryant, M.P., Tzeng, S.F., Robinson, I.M., and Joyner, A.E.: 1971, Adv. Chem. Ser. 105, 23.

    Google Scholar 

  • Capone, D.G., Reese, D.D., and Kiene, R.P.: 1983, Appl. Environ. Microbiol. 45, 1586.

    Google Scholar 

  • Cappenberg, Th. E.: 1973, Verh. Internat. Verein. Limnol. 18, 1300.

    Google Scholar 

  • Chang, T.Y. and Rudy, S.J.: 1990, Atm. Environ. 24, 2421.

    Google Scholar 

  • Cicerone, R.J. and Oremland, R.S.: 1988, Global Biogeochem. Cycles 2, 229.

    Google Scholar 

  • Colbeck, I. and Harrison, R.M.: 1985, Atm. Environ. 19, 1899.

    Google Scholar 

  • Hines, M.E. and Buck, J.D.: 1982, Appl. Environ. Microbiol. 43, 447.

    Google Scholar 

  • Ingvorsen, K. and Broc, T.D.: 1982, Limnol. Oceanogr. 27, 559.

    Google Scholar 

  • Jones, J.G., Simon, B.M., and Gardener, S.: 1982, J. Gen. Microbiol. 128, 1.

    Google Scholar 

  • Lamb, B., Guenther, A., Gay, D., and Westberg, H.: 1987, Atm. Environ. 21, 1695.

    Google Scholar 

  • Lamb, B., Westberg H., and Allwine, G.: 1986, Atm. Environ. 20, 1.

    Google Scholar 

  • Lovley, D.R. and Klug, M.J.: 1986, Geochim. Cosmochim. Acta. 50, 11.

    Google Scholar 

  • MacKenzie, A.R., Harrison, R.M., Colbeck, I., and Hewitt, C.N.: 1991, Atm. Environ. 25, 351.

    Google Scholar 

  • Masscheleyn, P.H., DeLaune, R.D., and Patrick, W.H., Jr.: 1993, Chemosphere. 26, 251.

    Google Scholar 

  • McCarty, G.W. and Bremner, J.M.: 1991, Bio. Fertil. Soils. 11, 231.

    Google Scholar 

  • Patrick, W.H., Jr., Williams, B.G., and Moraghan, J.T.: 1973, Soil Sci. Soc. Am. J. 37, 331.

    Google Scholar 

  • Phelps, T.J. and Zeikus, J.G.: 1984, Appl. Environ. Microbiol. 48, 1088.

    Google Scholar 

  • Plass, C., Koppmann, R., and Rudolph, J.: 1991, Fresenius J. Anal. Chem. 339, 746.

    Google Scholar 

  • Pulliam, W.M. and Meyer, J.L.: 1992, Biogeochem. 15, 151.

    Google Scholar 

  • Schutz, H., Seiler, W., and Conard, R.: 1989, Biogeochem. 7, 33.

    Google Scholar 

  • Smith, K.A. and Restall, S.W.F.: 1971, J. Soil Sci. 22, 430.

    Google Scholar 

  • Thompson, A.M.: 1990, Ozone Sci. Eng. 12, 177.

    Google Scholar 

  • Van Cleemput, O. and El-Sebaay, A.S.: 1985, Adv. Agron. 38, 159.

    Google Scholar 

  • Van Cleemput, O., El-Sebaay, A.S., and Baert, L.: 1983, Soil Biol. Biochem. 15, 519.

    Google Scholar 

  • Vogels, G.D., Keltjens, J.T. and Van Der Drift, C.: 1988, in A.J.B. Zehnder (ed.), Biology of anaerobic microorganisms. J. Wiley and Sons, Inc., New York, pp. 707–770.

    Google Scholar 

  • Winfrey, M.C. and Zeikus, J.G.: 1977, Appl. Environ. Microbiol. 33, 275.

    Google Scholar 

  • Zimmerman, P.R.: 1979, “Determination of emission rates of hydrocarbons from indigenous species of vegetation in the Tampa / St. Petersburg. Florida area”, EPA-904/9-77-028.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devai, I., Delaune, R. Light hydrocarbon production in freshwater marsh soil as influenced by soil redox conditions. Water Air Soil Pollut 88, 39–46 (1996). https://doi.org/10.1007/BF00157412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00157412

Key words

Navigation