Skip to main content
Log in

The formation of solar quiescent prominences by condensation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We model the formation of solar quiescent prominences by solving numerically the non-linear, time-dependent, magnetohydrodynamic equations governing the condensation of the corona. A two-dimensional geometry is used. Gravitational and magnetic fields are included, but thermal conduction is neglected. The coronal fluid is assumed to cool by radiation and to be heated by the dissipation of mechanical energy carried by shock waves. A small, isobaric perturbation of the initial thermal and mechanical equilibrium is introduced and the fluid is allowed to relax. Because the corona with the given energy sources is thermally unstable, cooling and condensation result.

When magnetic and gravitational fields are absent, condensation occurs isotropically with a strongly time-dependent growth rate, and achieves a density 18 times the initial density in 3.5 × 104 s. The rapidity of condensation is limited by hydrodynamical considerations, in contrast to the treatment of Raju (1968). When both magnetic and gravitational fields are included, the rate of condensation is inhibited and denser material falls.

We conclude that: (1) condensation of coronal material due to thermal instability is possible if thermal conduction is inhibited; (2) hydrodynamical processes determine, in large part, the rate of condensation; (3) condensation can occur on a time scale compatible with the observed times of formation of quiescent prominences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1963, Astrophysical Quantities, 2nd ed., Athlone Press, London.

    Google Scholar 

  • d'Azambuja, L. and d'Azambuja, M.: 1948, Ann. Obs. Paris-Meudon 6, No. 7.

    Google Scholar 

  • Brown, A.: 1958, Astrophys. J. 128, 646.

    Google Scholar 

  • Cox, D. P. and Tucker, W. H.: 1969, Astrophys. J. 157, 1157.

    Google Scholar 

  • Doherty, L. R. and Menzel, D. H.: 1965, Astrophys. J. 141, 251.

    Google Scholar 

  • Field, G. B.: 1965, Astrophys. J. 142, 531.

    Google Scholar 

  • Freeman, J. R. and Lane, F. O.: 1968, in APS Topical Conf. on Numerical Simulation of Plasma, Los Alamos Sci. Lab. Rept. LA-3990, Paper C7.

  • de Groot, S. R. and Mazur, P.: 1962, Non-Equilibrium Thermodynamics, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Hildner, E.: 1971, Ph.D. Thesis, University of Colorado.

  • Hirayama, T.: 1964, Publ. Astron. Soc. Japan 16, 105.

    Google Scholar 

  • Hunter, J. H., Jr.: 1966, Icarus 5, 321.

    Google Scholar 

  • Hunter, J. H., Jr.: 1970, Astrophys. J. 161, 451.

    Google Scholar 

  • Kippenhahn, R. and Schlüter, A.: 1957, Z. Astrophys. 43, 36.

    Google Scholar 

  • Kleczek, J.: 1957, Bull. Astron. Inst. Czech. 8, 120.

    Google Scholar 

  • Kleczek, J.: 1958, Bull. Astron. Inst. Czech. 9, 115.

    Google Scholar 

  • Kulikovsky, A. G. and Lyubimov, G. A.: 1965, Magnetohydrodynamics, Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Kuperus, M. and Tandberg-Hanssen, E.: 1967, Solar Phys. 2, 39.

    Google Scholar 

  • Lüst, R. and Zirin, H.: 1960, Z. Astrophys. 49, 8.

    Google Scholar 

  • Nakagawa, Y.: 1970, Solar Phys. 12, 419.

    Google Scholar 

  • Noyes, R. W., Dupree, A. K., Huber, M. C. E., Parkinson, W. H., Reeves, E. M., and Withbroe, G. L.: 1972, Harvard College Observatory, TR-35.

  • Oster, L. and Sofia, S.: 1966, Astrophys. J. 143, 944.

    Google Scholar 

  • Parker, E. N.: 1953, Astrophys. J. 117, 431.

    Google Scholar 

  • Piddington, J. H.: 1954a, Monthly Notices Roy. Astron. Soc. 114, 638.

    Google Scholar 

  • Piddington, J. H.: 1954b, Monthly Notices Roy. Astron. Soc. 114, 651.

    Google Scholar 

  • Pottasch, S. R.: 1965, Bull. Astron. Inst. Neth. 18, 7.

    Google Scholar 

  • Raadu, M. A. and Kuperus, M.: 1973, Solar Phys. 28, 77.

    Google Scholar 

  • Raju, P. K.: 1968: Monthly Notices Roy. Astron. Soc. 138, 479.

    Google Scholar 

  • Richtmyer, R. D. and Morton, K. W.: 1967, Difference Methods for Initial-Value Problems, Interscience, New York.

    Google Scholar 

  • Roberts, K. V. and Potter, D. E.: 1970, Methods Comput. Phys. 9, 339.

    Google Scholar 

  • Tandberg-Hanssen, E.: 1967, Solar Activity, Blaisdell, Waltham, Mass.

    Google Scholar 

  • Tandberg-Hanssen, E. and Anzer, U.: 1970, Solar Phys. 15, 158.

    Google Scholar 

  • Uchida, Y.: 1963a, Publ. Astron. Soc. Japan 15, 65.

    Google Scholar 

  • Uchida, Y.: 1963b, Publ. Astron. Soc. Japan 15, 376.

    Google Scholar 

  • Weyman, R.: 1960, Astrophys. J. 132, 380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildner, E. The formation of solar quiescent prominences by condensation. Sol Phys 35, 123–136 (1974). https://doi.org/10.1007/BF00156962

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156962

Keywords

Navigation