Skip to main content
Log in

Simulation studies of electron acceleration by ion ring distributions in solar flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using a 2 1/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvénic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can, therefore, resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to a bump-in-tail instability of the electron distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonucci, E., Gabriel, A. H., Acton, L. W., Culhane, J. L., Doyle, J. G., Leibacher, J. W., Machado, M. E., Orwig, L. E., and Rapley, C. G.: 1982, Solar Phys. 78, 107.

    Google Scholar 

  • Biskamp, D.: 1973, Nucl. Fusion 13, 719.

    Google Scholar 

  • Boldt, E. and Serlemitsos, P.: 1969, Astrophys. J. 157, 557.

    Google Scholar 

  • Brown, J. C.: 1971, Solar Phys. 18, 489.

    Google Scholar 

  • Brown, J. C., Melrose, D. B., and Spicer, D. S.: 1979, Astrophys. J. 228, 592.

    Google Scholar 

  • Burgess, D., Wilkinson, W. P., and Schwartz, S. J.: 1989, J. Geophys. Res. 94, 8783.

    Google Scholar 

  • Canfield, R. C., Bely-Dubau, F., Brown, J. C., Dulk, G. A., Emslie, A. G., Enome, S., Gabriel, A. H., Kundu, M. R., Melrose, D., Neidig, D. F., Ohki, K., Petrosian, V., Poland, A., Rieger, E., Tanaka, K., and Zirin, H.: 1986, in M. R. Kundu and B. Woodgate (eds.), Energetic Phenomena on the Sun, NASA CP-2439, Ch. 3.

  • Edmiston, J. P. and Kennel, C. F.: 1984, J. Plasma Phys. 32, 429.

    Google Scholar 

  • Emslie, A. G. and Alexander, D.: 1987, Solar Phys. 110, 295.

    Google Scholar 

  • Harrison, R. A.: 1986, Astron. Astrophys. 162, 283.

    Google Scholar 

  • Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.

    Google Scholar 

  • Hildner, E., Bassi, J., Bougeret, J. L., Duncan, R. A., Gary, D. E., Gergely, T. E., Harrison, R. A., Howard, R. A., Illing, R. M. E., Jackson, B. V., Kahler, S. W., Kopp, R., Low, B. C., Lantos, P., Phillips, K. J. H., Poletto, G., Sheeley, N. R., Stewart, R. T., Švestka, Z., Waggett, P. W., and Wu, S. T.: 1986, in M. R. Kundu and B. Woodgate (eds.), Energetic Phenomena on the Sun, NASA CP-2439, Ch. 6.

  • Holman, G. D.: 1985, Astrophys. J. 293, 584.

    Google Scholar 

  • Hoyng, P., Brown, J. C., and van Beek, H. F.: 1976, Solar Phys. 48, 197.

    Google Scholar 

  • Hsia, J. B., Chiu, S. M., Hsia, M. F., Chou, R. L., and Wu, C. S.: 1979, Phys. Fluids 22, 1737.

    Google Scholar 

  • Krall, N. A. and Liewer, P. C.: 1971, Phys. Rev. A4, 2094.

    Google Scholar 

  • Lampe, M., and Papadopoulos, K.: 1977, Astrophys. J. 212, 886.

    Google Scholar 

  • Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S., and Papadopoulos, K.: 1981, Geophys. Res. Letters 8, 1269.

    Google Scholar 

  • McBride, J. B., Ott, E., Boris, J. P., and Orens, J. H.: 1972, Phys. Fluids 15, 2367.

    Google Scholar 

  • Melrose, D. B.: 1980, Plasma Astrophysics, Vol. 2, Gordon and Breach, New York.

    Google Scholar 

  • Melrose, D. B. and Kuijpers, J.: 1987, Astrophys. J. 323, 338.

    Google Scholar 

  • Papadopoulos, K.: 1981, Proc. 1st Int. School Plasma Ap., ESA SP-161, p. 313.

  • Paschmann, G., Sckopke, N., Bame, S. J., and Gosling, J. T.: 1982, Geophys. Res. Letters 9, 881.

    Google Scholar 

  • Phillips, P. E. and Robson, A. E.: 1972, Phys. Rev. Letters 29, 154.

    Google Scholar 

  • Smith, D. F.: 1980, Solar Phys. 66, 135.

    Google Scholar 

  • Smith, D. F. and Lilliequist, C. G.: 1979, Astrophys. J. 232, 582.

    Google Scholar 

  • Spicer, D. S.: 1977, Solar Phys. 53, 305.

    Google Scholar 

  • Spicer, D. S.: 1982, Space Sci. Rev. 31, 351.

    Google Scholar 

  • Spicer, D. S. and Emslie, A. G.: 1988, Astrophys. J. 330, 997.

    Google Scholar 

  • Spicer, D. S., Benz, A. O., and Huba, J. D.: 1981, Astron. Astrophys. 105, 221.

    Google Scholar 

  • Takakura, T. and Kai, K.: 1966, Publ. Astron. Soc. Japan 18, 57.

    Google Scholar 

  • Thejappa, G.: 1987, Solar Phys. 111, 45.

    Google Scholar 

  • Tidman, D. A. and Krall, N. A.: 1971, Shock Waves in Collisionless Plasma, Wiley, New York.

    Google Scholar 

  • Tsytovich, V. N., Stenflo, L., and Wilhelmson, H.: 1975, Phys. Scripta 11, 251.

    Google Scholar 

  • Vlahos, L., Gergely, T. E., and Papadopoulos, K.: 1982, Astrophys. J. 258, 812.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClements, K.G., Su, J.J., Bingham, R. et al. Simulation studies of electron acceleration by ion ring distributions in solar flares. Sol Phys 130, 229–241 (1990). https://doi.org/10.1007/BF00156791

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156791

Keywords

Navigation