Skip to main content
Log in

The effect of retardation on the stability of current filaments

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the influence of the finite Alfvén velocity on the evolution of an active region filament. In general, variations of a current result in variations of the magnetic fields which spread around with the Alfvén velocity. As a consequence of the fact that a magnetic field can only change with the Alfvén velocity, a filament will experience the photospheric boundary conditions as these were at an Alfvén travel time back in time. The inclusion of this retardation effect in the momentum equation of a filament leads effectively to an extra force term. This force contribution acts in the direction in which the filament moves and has therefore a destabilizing effect on the filament. Because a moving filament acts as an antenna of Alfvén waves, the filament loses energy by the emission process. This leads to a radiative damping term in the equation of motion of the filament. In general, the radiative damping will be sufficiently strong to counteract the retardation instability. Numerical simulations show that during the energy build-up phase a filament follows the van Tend-Kuperus equilibrium curve. After the van Tend-Kuperus equilibrium has disappeared the filament goes through a transient phase moving with a sub-Alfvénic velocity upward. At greater heights the repulsive Lorentz force of the photospheric surface current magnetic field is balanced by the radiative damping, resulting in a decreasing filament velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzer, U. and Ballester, J. L.: 1990, Astron. Astrophys. 238, 365.

    Google Scholar 

  • Barnett, A. and Olbert, S.: 1986, J. Geophys. Res. 91, 10117.

    Google Scholar 

  • Démoulin, P.: 1989, Thesis, University of Paris VII.

  • Démoulin, P. and Priest, E. R.: 1988, Astron. Astrophys. 206, 336.

    Google Scholar 

  • Dobrowolny, M. and Veltri, P.: 1986, Astron. Astrophys. 167, 179.

    Google Scholar 

  • Drell, S. D., Foley, H. M., and Ruderman, M. A.: 1965, J. Geophys. Res. 70, 3131.

    Google Scholar 

  • Jackson, J. D.: 1975, Classical Electrodynamics, Wiley and Sons, New York, Ch. 17.2.

    Google Scholar 

  • Kaastra, J. S.: 1985, Thesis, University of Utrecht.

  • Kippenhahn, R. and Schlüter, A.: 1957, Z. Astrophys. 43, 36.

    Google Scholar 

  • Kuperus, M. and Raadu, M. A.: 1974, Astron. Astrophys. 31, 189.

    Google Scholar 

  • Kuperus, M. and van Tend, M.: 1981, Solar Phys. 71, 125.

    Google Scholar 

  • Leroy, J. L., Bommier, V., and Sahal-Bréchot, S.: 1983, Solar Phys. 83, 135.

    Google Scholar 

  • Leroy, J. L., Bommier, V., and Sahal-Bréchot, S.: 1984, Astron. Astrophys. 131, 33.

    Google Scholar 

  • Mazrtens, P. C. H. and Kuin, N. P. M.: 1989, Solar Phys. 122, 263.

    Google Scholar 

  • Thompson, W. T. and Schmieder, B.: 1991, Astron. Astrophys. 243, 501.

    Google Scholar 

  • van den Oord, G. H. J.: 1988, Astron. Astrophys. 205, 167.

    Google Scholar 

  • van Tend, W.: 1979, Thesis, University of Utrecht.

  • van Tend, W. and Kuperus, M.: 1978, Solar Phys. 59, 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Den Oord, G.H.J., Kuperus, M. The effect of retardation on the stability of current filaments. Sol Phys 142, 113–129 (1992). https://doi.org/10.1007/BF00156636

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156636

Keywords

Navigation