Plant and Soil

, Volume 173, Issue 1, pp 111–132 | Cite as

The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands

  • Robert G. M. Hofstede
Research Article

Abstract

The impact of extensive livestock farming on the physical and chemical characteristics of the volcanic soils and on the nutrient status of green plant tissues of neotropical alpine grasslands (páramo) is studied. Soil and plant samples were taken over a one-year period at five sites with different agricultural (grazing and burning) management. In the undisturbed páramo ecosystem, soil moisture (50–250%) and organic matter content are high (7–27%) and decomposition (11–35% yr-1) and element concentrations are low. Low temperatures (max < 10°C) and phosphorus fixation by the soil (5 mg P g-1 soil) determine the low mineralization and turn-over rates.

Multivariate analysis of laboratory results indicates that the season of sampling and the agricultural practice are the most important explanatory factors for variation of soil characteristics. After long-term heavy grazing, soils have a higher bulk density and a lower moisture content. The outcome of a litterbag experiment confirms the hypothesis of higher decomposition rates at grazed sites. In the intermediate (wet-dry) season, conditions were somewhat better for plant growth but the system remained nutrient limited.

Surprisingly, no relation between soil density, moisture or carbon content and concentrations of available nutrients in the soil is found. This is supported by the rather uniform nutrient concentrations in green plant tissue among the sites. It is concluded therefore that the effect of burning and grazing on páramo soils is principally restricted to physical characteristics, and that differences in chemical characteristics of the soil do not cause differences in vegetation structure between grazed, burned and undisturbed sites.

Key words

Andosols fire litter decomposition P-fixation tropical alpine tussock grass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S E, Grimshaw, H M, Parkinson, J A and Quarmby, C 1974 Chemical Analysis of Ecological Materials. Blackwell, London. 763p.Google Scholar
  2. Beck, E, Senser, M, Scheibe, R, Steiger, H-M and Pongratz, P 1982 Frost avoidance and freezing tolerance in Afro alpine “giant rosette” plants. Plant Cell Environ. 5, 215–222.Google Scholar
  3. Bekker, R P and Cleef, A M 1985 La Vegetación del Páramo de la Laguna Verde (Municipio de Tausa, Cundinamarca). Analysis Geografcos 14, IGAC, Bogotá, Colombia. 193p.Google Scholar
  4. Billings, W D 1973 Arctic and alpine vegetations: Similarities, differences and susceptability to disturbance. Bio Science 23, 697–704.Google Scholar
  5. Binkley, D and Vitousek, P M 1989 Soil nutrient availability. In Plant Physiological Ecology. Field methods and instrumentation. Eds. P WPearcy, JEhlerirtger, H AMooney and P WRundel. pp 75–96. Chapman and Hall, London.Google Scholar
  6. Bowman, W D, Theodose, T A, Schardt, J C and Conant, R T 1993 Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74, 2085–2097.Google Scholar
  7. Bryant, J P, ChapinIII, F S and Klein, D R 1983 Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357–368.Google Scholar
  8. Caldwell, M M, Richards, J H, Johnson, D A, Nowak, R W and Dzurec, R S 1981 Coping with herbivory: Photosynthetic capacity and recourse allocation in two semi-arid Agropyron bunchgrasses. Oecologia 50, 14–24.Google Scholar
  9. Cardozo, C H and Schnetter, M L 1975 Estudios ecológicos en el Páramo de Cruz Verde, Colombia. III. La biomasa de tres asociaciones vegetales y la productividad de Calamagrostis ef Yusa (H.B.K.) Steud. y Paepalanthus columbiensis. Ruhl. en comparacion con la concentracion de clorofila. Caldasia 11, 85–91.Google Scholar
  10. Chapin, F SIII 1980 The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260.Google Scholar
  11. Chapin, F SIII, Barsdate, R J and Barèl, D 1978 Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31, 189–199.Google Scholar
  12. Chapin, F SIII, VanCleve, K and Chapin, M C 1979 Soil temperature and nutrient cycling in the tussock growth form of Eriophorum vaginatum. J. Ecol. 67, 169–189.Google Scholar
  13. Cleef A M 1981 The vegetation of the páramos of the Colombian Cordillera Oriental. Diss. Bot. 16. J. Cramer, Vaduz. 321p.Google Scholar
  14. Cuatrecasas, J 1958 Aspectos de la vegetación natural. Rev. Acad. Colomb. Cienc. Exactas Fis. nat. 10, 221–264.Google Scholar
  15. Dormaar, J F, Smoliak, S and Willms, W D 1989 Vegetation and soil responces to short-duration grazing on fescue grasslands. J. Range Manage. 42, 252–256.Google Scholar
  16. Enriquez, S, Duarte, C M and Sand-Jensen, K 1993 Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94, 457–471.Google Scholar
  17. Fetcher, N, Beatty, T F, Mullinax, B and Winkler, D S 1984 Changes in arctic tussock tundra thirteen years after fire. Ecology 65, 1332–1333.Google Scholar
  18. Guhl, E 1968 Los páramos circundantes de la Sabana de Bogotá. Su ecologia y su importancia para el régimen hidrológico de la misma. Coll. Geogr. 9, 195–212.Google Scholar
  19. Hedberg, O 1992 Afroaline vegetation compared to páramo: Convergent adaptations and divergent differentiation. In Páramo; An Andean ecosystem under human influence. Eds. HBalslev and J L Luteyn. pp 15–29. Academic Press, London.Google Scholar
  20. Hofstede, R G M, M XMondragón C and C MRocha O 1995a Biomass of grazed, burned and undisturbed páramo grasslands, Colombia. I. Aboveground vegetation. Arct. Alp. Res. 27, 1–11.Google Scholar
  21. Hofstede, R G M, Chilito, E J and Sandoval, E M 1995b Aspectos de la microestructura de las macollas paramunas; implicaciones ecologicas e impacto del pastoreo. In. Mernorias del Symposio Internacional de Ecosistemas Montañosos Tropicales. Eds. A MCleef and MMonasterio. Tercer mundo editores, Santafé de Bogotá.Google Scholar
  22. Johnston, A, Dormaar, J F and Smoliak, S 1971 Long-term grazing effects on fescue grassland soils. J. Range Manage. 24, 185–188.Google Scholar
  23. Jongman, R H G, Ter Braak, C J F and VanTongeren, O F R 1957 Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen. 299p.Google Scholar
  24. Lægaard, S 1992 Influence of fire in the grass páramo vegetation of Ecuador. In Páramo: An Andean Ecosystem under Human Influence. Eds. HBalslev and J LLuteyn. pp 151–170. Academic Press, London.Google Scholar
  25. Luteyn, J 1992 Pármos, Why study them? In Páramo; An Andean Ecosystem under Human Influence. Eds. HBalslev and J LLuteyn. pp 1–14. Academic Press London.Google Scholar
  26. Marion, G M and Miller, P C 1982 Nitrogen mineralization in a tussock tundra soil. Arct. Alp. Res. 14, 287–293.Google Scholar
  27. McNaughton, S J, Ruess, R W and Seagle, S W 1988 Large mammals and process dynamics in African ecosystems. BioScience 38, 794–800.Google Scholar
  28. Medina, E 1968 Bodenatmung und Streuproduktion verschiedtner tropischer Pflanzengerneinschaften. Ber. Dtsch. Bot. Ges. 81, 159–168.Google Scholar
  29. Milchunas, D G and Lauenroth, W K 1993 Quantitative effects of grazing on vegetation and soils over a global range ofenvironments. Ecol. Monogr. 63, 327–366.Google Scholar
  30. Milchunas, D G, Sala, O E and Lauenroth, W K 1988 A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106.Google Scholar
  31. Monasterio, M 1980 Estudios ecologicos en los páramos Andinos. Ediciones de la Universidad de los Andes, Mérida, Venezuela. 312p.Google Scholar
  32. Monasterio, M and Sarmiento, L 1991 Adaptive radiation of Espeletia in the cold andean tropics. Trends Ecol. Evol. 6, 387–391.Google Scholar
  33. Monasterio, M and Vuilleumier, F 1986 Introduction: High tropical mountain biota of the World. In High Altitude Tropical Biogeography. Eds. FVuilleumier and MMonasterio. pp 3–10. Oxford University Press, New York, Oxford.Google Scholar
  34. Moorhead, D L and Reynolds, J F 1993 Effects of climate change on decomposition in aretic tussock tundra: a modeling synthesis. Arct. Alp. Res. 25, 403–412.Google Scholar
  35. Nadelhoffer, K J, Giblin, A E, Shaver, G R and Laundre, J A 1991 Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72, 242–253.Google Scholar
  36. Negi, G C S, Rikhari, H C and Singh, S P 1992 Phenological features in relation to growth forms and biomass accumulation in an alpine meadow of the Central Himalaya. Vegetatio 101, 161–170.Google Scholar
  37. Parsons, J 1982 The Northern Andean environment. Mount. Res. Dev. 2, 253–262.Google Scholar
  38. Pastrana, R, McDowell, L R, Conrad, J H, Wilkinson, N S and Martin, F G 1990 Mineral concentrations in leaves and stems of various forages of the Colombian párama. Commun. Soil Sci. Plant Anal. 21, 2345–2360.Google Scholar
  39. Pérez, F L 1992 The influence of organic matter addition by caulescent Andean rosettes on superficial soil properties. Geoderma 54, 151–171.Google Scholar
  40. Ramsay P M 1993 The páramo vegetation of Ecuador: the conimunity ecology, dynamics and productivity of tropical grasslands in the Andes. Ph.D. thesis. University of Wales. 243p.Google Scholar
  41. Rossenaar, A J G A and Hofstede, R G M 1992 Effects of burning and grazing on root biomass in the páramo ecosystem. In Páramo: An andean Ecosystem under Human Influence. Eds. HBalslev and J LLuteyn. pp 211–214. Academic Press, London.Google Scholar
  42. Ruess, R W 1984 Nutrient movement and grazing: experimental effects of clipping and nitrogen source on nutrient uptake in Kyllinga nervosa. Oikos 43, 183–188.Google Scholar
  43. Ruíz, S M C and Bustamante, Z 1988 Descomposición de la materia orgánica bajo condiciones controladas. Ecol. Bolivia 11, 47–64.Google Scholar
  44. Rundel, P W 1981 Fire as an ecological factor. In Physiological Plant Ecology. I. Responses to the Physical Environment. Encyclopedia of Plant Physiology 12A. Eds. O LLange, P SNobel, C BOsmond and HZiegler. pp 501–538. Springer-Verlag, Berlin.Google Scholar
  45. Salamanca S 1991 The vegetation of the páramo and its dynamics in the volcanic massif Ruiz-Tolima (Cordillera Central, Colombia). Ph.D. Dissertation, University of Amsterdam.Google Scholar
  46. Sanchez, P A 1976 Properties and Management of Soils in the Tropics. J Wiley and Sons, New York. 618p.Google Scholar
  47. Sarmiento, G 1986 Ecological features of climate in high tropical mountains. In High Altitude Tropical Biogeography. Eds. FVuillemier and MMonasterio. pp 11–45. Oxford University press, New York, Oxford.Google Scholar
  48. Seastedt, T R, Briggs, J M and Gibson, D J 1991 Controls of nitrogen limitation in tallgrass prairie. Oecologia 87, 72–79.Google Scholar
  49. Seeling, B and Zasoski, R J 1993 Microbial effects in maintaining organic and inorganic solution phosphorous concentrations in a grassland topsoil. Plant and Soil 148, 277–284.Google Scholar
  50. Shaver, G R and ChapinIII, F S 1991 Production:biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr. 61, 1–31.Google Scholar
  51. Smith, A P 1979 Fuction of dead leaves in Espeletia schultzii (Compositae), an andean giant rosette species. Biotropica 11, 43–47.Google Scholar
  52. Smith, A P and Young, T P 1987 Tropical alpine plant ecology. Annu. Rev. Ecol. Syst. 18, 137–158.Google Scholar
  53. Smith, J M B and Klinger, L F 1985 Aboveground:Belowground phytomass ratios in Venezuelan páramo vegetation and their significance. Arct. Alp. Res. 17, 189–198.Google Scholar
  54. Sturm, H and Rangel, O 1985 Ecologia de los Páramos Andinos: una Visión Preliminalr Integrada. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. 292p.Google Scholar
  55. Swift, M J, Heal, O W and Anderson, J M 1979 Decomposition in Terrestrial Ecosystems. Studies in Ecology 5. Blackwell Scientific Publications, Oxford, London. 372p.Google Scholar
  56. Ter Braak, C J F 1987 CANOCO-a FORTRAN program for canonical community ordinaition by [partial] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). ITI-TNO, Wageningen, The Netherlands. 95p.Google Scholar
  57. Thouret, J C 1989 Suelos de la Cordillera Central. In Studies on Tropical Andean Ecosysterns 3. Eds. ThVan derHammen, SDiaz P and V JAlvarez. pp 293–442. J Cramer, Berlin, Stuttgart.Google Scholar
  58. Tol, G J and Cleef, A M 1992 Nutrient status of a Chusquea tesselata bamboo páramo In Páramo: An Anndean Ecosystem under Human Influence. Eds. HBalslev and J LLuteyn. pp 123–136. Academic Press, London.Google Scholar
  59. Troll, C 1968 The cordilleras of the tropical Americas. In GeoEcology of the Mountain Regions of the Tropical Americas. Ed. CTroll. pp 15–56. Ferd. Dümmlers Verlag, Bonn.Google Scholar
  60. U S Department of Agriculture 1975 Soil Taxonomy: a Basic System of Soil Classification and Interpreting Soil Surveys. Agriculture Handbook 436. Soil Conservation Service, Government Printing Office. Washington. 754p.Google Scholar
  61. Valencia, H A 1983 Estimaciones de la respiración microbial del suelo en vertientes humeda y seca de la Cordillera Central de Colombia. In Studies on Tropical Andean Ecosystems 1. Eds. ThVan derHammen, APerez P and PPinto E, pp 219–226. J Cramer, Vaduz, Liechtenstein.Google Scholar
  62. VanReeuwijk, L P 1989 Andosols. In Lecture Notes on the Major Soils of the World. eds. P MDriessen and RDukdal. pp 47–54. Pudoc, Wageningen.Google Scholar
  63. Verweij, P A and Budde, P E 1992 Burning and grazing gradients in páramo vegetation: initial ordination analysis. In Páramo: An Andean Ecosystem under Human Influence. Eds. HBalsley and J LLuteyn. pp 177–196. Academic Press, London.Google Scholar
  64. Vitouesek, P M 1982 Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572.Google Scholar
  65. Vitousek, P M and Howarth, R W 1991 Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13, 87–115.Google Scholar
  66. Vogel, A I 1961 A Text-book of Quantitative Inorganic Analysis including instrumental Analysis. 3rd edition. Longman, London. 1261p.Google Scholar
  67. Vogl, R J 1974 Effects of fire on grasslands. In Fire and Ecosystems. Ed. T TKozlowski and C EAhlgren. pp 139–194. Academic Press, New York.Google Scholar
  68. Wada, K 1980 Mineral characteristics of Andisols. In Soils with variable Charge. Ed. B K GTheng. pp 87–107. Offset Publishers, Palmerston North, New Zealand.Google Scholar
  69. Wiegert, R G and Evans, F C 1964 Primary production and the disappearance of dead vegetation on an old field in South-Eastern Michigan. Ecology 43, 49–63.Google Scholar
  70. Witte, H J L 1995 Seasonal and altitudinal distribution of precipitation, temperature and humidity in the Parque Los Nevados Transect (Cordillera Central, Colombia). In Studies on Tropical Andean Ecosystems 4. Eds. ThVan DerHammen and A GDos Santos. J Cramer, Berlin, Stuttgart.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Robert G. M. Hofstede
    • 1
  1. 1.Hugo de Vries Laboratory, Department of Palynology and Paleo/Actuo ecologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations