Advertisement

Hydrobiologia

, Volume 19, Issue 1, pp 1–39 | Cite as

The respiration of some animals from the Profundal Zone of a lake

  • Kaj Bérg
  • Pétur M. Jónasson
  • K. W. Ockelmann
Article

Summary

  1. 1.

    The oxygen consumption of some profundal and other muddwelling animals was studied in relation to varying periods of starvation, varying temperatures and varying oxygen content of the water. This oxygen uptake corresponds to moderately active, not to a basal, metabolism.

     
  2. 2.

    In the oligochaetes starvation did not depress the oxygen consumption but sometimes an increase of consumption was observed during the experiments, presumably caused by an increase of activity.

    In the case of Pisidium casertanum the oxygen consumption may be slightly depressed by starvation, but no distinct decrease occured in Corethra flavicans and Procladius sp. In Chironomus anthracinus there was no marked influence of starvation.

     
  3. 3.

    The curve relating oxygen consumption to a gradually increased temperature was found to be less steep than Krogh's curve in Chironomus anthracinus and to correspond with Krogh's curve in Lumbricillus rivalis and Pisidium casertanum. The slope was, however, more steep than Krogh's curve in Tubifex tubifex and T. barbatus, Ilyodrilus hammoniensis, Corethra flavicans and Procladius sp. It ought to be emphasized that the results relate to active respiration and short-term experiments. A comparison has been made between the present results and similar ones from experiments with other freshwater invertebrates (Table V, p. 35).

     
  4. 4.

    It was found that the respiration had three main types of relation to oxygen content of the water:

     
  1. (a)

    one type has nearly the same oxygen consumption from air-saturation to c. 1\12–5% oxygen, where there is a distinct critical point of oxygen content below which a marked decrease of consumption occurs, (Tubifex tubifex, Tubifex barbatus, Ilyodrilus hammoniensis and Chironomus anthracinus). The critical points are at a low oxygen concentration, a quarter of air-saturation or still lower.

     
  2. (b)

    a second type has a decreasing consumption from air-saturation to 4–6% oxygen, and then a still more marked decrease (Lumbricillus rivalis, Procladius, and Pisidium casertanum).

     
  3. (c)

    a third has an oxygen consumption decreasing gradually to the lowest values (Corethra flavicans).

     

Keywords

Oxygen Respiration Oxygen Consumption Oxygen Content Oxygen Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, K. - 1937 - Contributions to the biology of CCorethra Meigen (Chaoborus Lichtenstein). K. Danske Vidensk. Selsk. biol. Medd., 13, 1–101.Google Scholar
  2. Berg, K. - 1938 - Studies on the bottom animals of Esrom Lake. K. Danske Vidensk. Selsk. Skr. Naturv. Math. Afd. 9. Rk. 8, 1–255.Google Scholar
  3. Berg, K. - 1952 - On the oxygen consumption of Ancylidae (Gastropoda) from an ecological point of view, Hydrobiologia, 4, 225–267.CrossRefGoogle Scholar
  4. Berg, K. - 1953 - The problem of respiratory acclimatization. Hydrobiologia, 5, 331–50.CrossRefGoogle Scholar
  5. Berg, K., Lumbye, J. & Ockelmann, K. W. - 1958 - Seasonal and Experimental Variations of the Oxygen Consumption of the Limpet Ancylus fluviatilis (O. F. Müller). J. exp. Biol., 35, 43–73.Google Scholar
  6. Berg, K. & Nygaard, G. - 1929 - Studies on the plankton in the lake of Frederiksborg Castle. Mém. Acad. Roy. Sci. Lett. de Danemark, 9. sér., 1, 227–316.Google Scholar
  7. Berg, K. & Ockelmann, K. W. - 1959 - The Respiration of Freshwater Snails. J. exp. Biol. 36, 690–708.Google Scholar
  8. Bullock, Th. H. -1955 - Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30, 311–42.CrossRefGoogle Scholar
  9. Crozier, W. J. - 1925 - On biological oxidations as function of temperature. J. gen. Physiol. (Am.), 7, 189–216.CrossRefGoogle Scholar
  10. Crozier, W. J. & Stier, T. B. - 1925 - Critical increment for opercular breathing rhythm of the gold fish. J. gen. Physiol. (Am.), 7, 699–704.CrossRefGoogle Scholar
  11. Ege, R. & Krogh, A. - 1914 - On the Relation between the Temperature and the Respiratory Exchange in Fishes. Int. Rev. Hydrobiol., 6, 48–55.CrossRefGoogle Scholar
  12. Ellinger, T. - 1915 - Über den Ruhestoffwechsel der Insekten (culiciden) und seine Abhängigkeit von der Temperatur. Int. Z. physik.-chem. Biol., 2, 85–93.Google Scholar
  13. Fry, F. E. J. - 1947 - Effects of the environment on animal activity. Univ. of Toronto Stud., Biol. Ser., no. 55, 1–62.Google Scholar
  14. Fry, F. E. J. - 1957 - The aquatic respiration of fishes. In E. Brown, The Physiology of Fishes. New York, 1–63.Google Scholar
  15. Fry, F. E. J. & Hart, J. S. - 1948a - The relation of temperature to oxygen consumption in the goldfish. Biol. Bull. 94, 66–77.CrossRefPubMedGoogle Scholar
  16. Fry, F. E. J. and Hart, J. S. - 1948b - Cruising speed of goldfish in relation to water temperature. J. Fish. Res. Board Can., 7, 169–175.CrossRefGoogle Scholar
  17. Harnisch, O. - 1953 - Untersuchungen zum Gaswechsel der Larvae von Chaoborus crystallinus Lichtenstein (= Corethra plumicornis). Zool. Jb. Phys., 64, 97–113.Google Scholar
  18. Hemmingsen, A. - 1950 - The relation of standard (basal) energy metabolism to total fresh weight of living organisms. Rep. Steno Memorial Hosp., 4, 7–58. Copenh. Google Scholar
  19. Jónasson, P. M. - 1961 - Population dynamics in Chironomus anthracinus Zett. in the profundal zone of Lake Esrom. Verh. int. Ver. Limnol. 14.Google Scholar
  20. Krogh, A. - 1914 - The quantitative relation between temperature and standard metabolism in animals. Int. Z. phys.-chem. Biol., 1, 491–508.Google Scholar
  21. Krogh, A. - 1961 - Respiratory Exchange of Animals and Man. London.Google Scholar
  22. Krogh, A. - 1941 - The Comparative Physiology of Respiratory Mechanisms, Philadelphia.Google Scholar
  23. Lindroth, A. - 1943 - Die Biologische Bedeutung des “Hämoglobins” (Erythrocruorins) der Wirbellosen. Ergebn. Biol., 19, 324–374.Google Scholar
  24. Lumbye, J. - 1958 - The oxygen consumption of Theodoxus fluviatilis (L.) and Potamopyrgus jenkinsi (Smith) in brackish and fresh water. Hydrobiologia, 10, 245–262.CrossRefGoogle Scholar
  25. Navez, A. E. - 1931 - Apropos de coefficients de température en biologie. Proptoplasma (D.), 12, 86–111.CrossRefGoogle Scholar
  26. Schlieper, C. - 1950 - Temperaturbezogene Regulationen des Grundumsatzes bei wechselwarmen Tieren. Biol. Zbl., 69, 216–226.Google Scholar
  27. Schlieper, C. - 1952 - Versuch einer physiologischen Analyse der besonderen Eigenschaften einiger eurythermer Wassertiere. Biol. Zbl. 71, 449–461.Google Scholar
  28. Wells, N. A. - 1935a - Variation in the respiratory metabolism of the Pacific Killifish Fundulus parvipennis due to size, season, and continued constant temperature. Physiol. Zool., 8, 318–36.CrossRefGoogle Scholar
  29. Wells, N. A. - 1935b - Change in rate of respiratory metabolism in a teleost fish induced by acclimatization to high and low temperature. Biol. Bull. Woods Hole, 69, 361–7.CrossRefGoogle Scholar

Copyright information

© Dr. W. Junk Den Haag 1962

Authors and Affiliations

  • Kaj Bérg
    • 1
  • Pétur M. Jónasson
    • 1
  • K. W. Ockelmann
    • 1
  1. 1.Freshwater Biological LaboratoryUniversity of CopenhangenCopenhangenDenmark

Personalised recommendations