Skip to main content
Log in

The Alfvén-wave theory of solar flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Evidence is discussed showing that a representative solar flare event comprises three or more separate but related phenomena requiring separate mechanisms. In particular it is possible to separate the most energetic effect (the interplanetary blast) from the thermal flare and from the rapid acceleration of particles to high energies. The phenomena are related through the magnetic structure characteristic of a composite flare event, being a bipolar surface field with most of its field lines ‘closed’. Of primary importance are helical twists on all scales, starting with the ‘flux rope’ of the spot pair which was fully twisted before it emerged. Subsequent untwisting by the upward propagation of an Alfvén twist wave provides the main flare energy.

  1. (i)

    The interplanetary blast model is based on subsurface, helically twisted flux ropes which erupt to form spots and then transfer their twists and energy by Alfvén-twist waves into the atmospheric magnetic fields. The blast is triggered by the prior-commencing flash phase or by a coronal wave.

  2. (ii)

    The thermal flare is explained in terms of Alfvén waves travelling up numerous ‘flux strands’ (Figure 3) which have frayed away from the two flux ropes. The waves originate in interaction (collisions, bending, twisting, rubbing) between subsurface flux strands; the sudden flash is caused by a collision. The classical twin-ribbon flare results from the collision of a flux rope with a tight bunch of S-shaped flux strands.

  3. (iii)

    The impulsive acceleration of electrons (hard X-ray, EUV, Hα and radio bursts) is tentatively attributed to magnetic reconnection between fields in two parallel, helically twisted flux strands in the low corona.

  4. (iv)

    Flare (Moreton) waves in the corona have the same origin as the interplanetary blast. Sympathetic flares represent only the start of enhanced activity in a flare event already in the slow phase. Filament activation also occurs during the slow phase as twist Alfvén waves store their energy in the atmosphere.

  5. (v)

    Flare ejecta are caused by Alfvén waves moving up flux strands. Surges are attributed to packets of twist Alfvén waves released into bundles of flux strands; the waves become non-linear and drive plasma upwards. Spray-type prominences result from accumulations of Alfvén wave energy in dome-shaped fields; excessive energy density eventually explodes the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H. and Carlqvist, P.: 1967, Solar Phys. 1, 220.

    Google Scholar 

  • Allen, C. W.: 1973, Astrophysical Quantities, Univ. London Press.

  • Altschuler, M. D., Lilliequist, C. G., and Nakagawa, Y.: 1968, Solar Phys. 5, 366.

    Google Scholar 

  • Babcock, H. W.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Barnes, C. W. and Sturrock, P. A.: 1972, Astrophys. J. 174, 659.

    Google Scholar 

  • Brown, J. C.: 1973, Solar Phys. 31, 143.

    Google Scholar 

  • Bruzek, A.: 1967, in J. H. Xanthakis (ed.), Solar Physics, Wiley-Interscience, New York, p. 399.

    Google Scholar 

  • Bruzek, A.: 1969, in C. de Jager and Z. Švestka (eds.), Solar Flares and Space Research, North-Holland, Amsterdam, p. 61.

    Google Scholar 

  • Bruzek, A. and Demastus, H. L.: 1970, Solar Phys. 12, 447.

    Google Scholar 

  • Bumba, V.: 1962, Bull. Astron. Inst. Czech. 13, 48.

    Google Scholar 

  • Carmichael, H.: 1964, in W. N. Hess (ed.), The Physics of Solar Flares, NASA Symp., p. 451.

  • de Jager, C.: 1969, in C. de Jager and Z. Švestka (eds.), Solar Flares and Space Research, North-Holland, Amsterdam, p. 1.

    Google Scholar 

  • Ellison, M. A.: 1959, Monthly Notices Roy. Astron. Soc. 109, 3.

    Google Scholar 

  • Frazier, E. N.: 1972, Solar Phys. 26, 130.

    Google Scholar 

  • Gold, T.: 1964, in W. N. Hess (ed.), The Physics of Solar Flares, NASA Symp., p. 389.

  • Gold, T. and Hoyle, F.: 1960, Monthly Notices Roy. Astron. Soc. 120, 7.

    Google Scholar 

  • Harvey, K. L.: 1971, Solar Phys. 16, 423.

    Google Scholar 

  • Harvey, K. and Harvey, J.: 1973, Solar Phys. 28, 61.

    Google Scholar 

  • Hyder, C. L.: 1968, in Y. Öhman (ed.), Nobel Symp. 9, 57.

  • Hyder, C. L., Epstein, G. L., and Hobbs, R. W.: 1973, Astrophys. J. 185, 985.

    Google Scholar 

  • Hundhausen, A. J.: 1972, Coronal Expansion and Solar Wind, Springer-Verlag, Berlin.

    Google Scholar 

  • Kane, S. R.: 1969, Astrophys. J. 157, L139.

    Google Scholar 

  • Kane, S. R.: 1972, Solar Phys. 27, 174.

    Google Scholar 

  • Kelley, P. T. and Rense, W. A.: 1972, Solar Phys. 26, 431.

    Google Scholar 

  • Kiepenheuer, K. O.: 1964, in W. N. Hess (ed.), The Physics of Solar Flares, NASA Symp., p. 322.

  • Korobeinikov, V. P.: 1969, Solar Phys. 7, 463.

    Google Scholar 

  • Lin, R. P.: 1974, Space Sci. Rev. 16, 189.

    Google Scholar 

  • Michard, R.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’, IAU Symp. 43, 359.

  • Moreton, G. E.: 1964, in W. N. Hess (ed.), The Physics of Solar Flares, NASA Symp., p. 209.

  • Mullan, D. J.: 1973, Astrophys. J. 185, 353.

    Google Scholar 

  • Nakagawa, Y., Raadu, M. A., Billings, D. E., and McNamara, D.: 1971, Solar Phys. 19, 72.

    Google Scholar 

  • Piddington, J. H.: 1969, Cosmic Electrodynamics, Wiley-Interscience, New York.

    Google Scholar 

  • Piddington, J. H.: 1973a, Solar Phys. 31, 229.

    Google Scholar 

  • Piddington, J. H.: 1973b, Solar Phys. 33, 363.

    Google Scholar 

  • Piddington, J. H.: 1974, submitted to Solar Phys.

  • Pneuman, G. W.: 1967, Solar Phys. 2, 462.

    Google Scholar 

  • Raadu, M. A. and Nakagawa, Y.: 1971, Solar Phys. 20, 64.

    Google Scholar 

  • Richardson, R. S.: 1951, Astrophys. J. 114, 356.

    Google Scholar 

  • Roy, J.-R.: 1973, Solar Phys. 32, 139.

    Google Scholar 

  • Savage, B. D.: 1969, Astrophys. J. 156, 707.

    Google Scholar 

  • Schmidt, H. U.: 1969, in C. de Jager and Z. Švestka (eds.), Solar Flares and Space Research, North- Holland, Amsterdam, p. 331.

    Google Scholar 

  • Smith, D. F. and Priest, E. R.: 1972, Astrophys. J. 176, 487.

    Google Scholar 

  • Smith, S. F. and Harvey, K. L.: 1971, in C. J. Macris (ed.), Physics of the Solar Corona, D. Reidel, Dordrecht-Holland, p. 156.

    Google Scholar 

  • Smith, S. F. and Howard, R.: 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 33.

  • Stenflo, J. O.: 1969, Solar Phys. 8, 115.

    Google Scholar 

  • Stenflo, J. O.: 1973, Solar Phys. 32, 41.

    Google Scholar 

  • Sturrock, P. A.: 1972, Solar Phys. 23, 438.

    Google Scholar 

  • Sturrock, P. A. and Coppi, B.: 1965, Astrophys. J. 143, 3.

    Google Scholar 

  • Sweet, P. A.: 1969, Ann. Rev. Astron. Astrophys. 7, 149.

    Google Scholar 

  • Švestka, Z.: 1969, in C. de Jager and Z. Švestka (eds.), Solar Flares and Space Research, North-Holland, Amsterdam, p. 16.

    Google Scholar 

  • Švestka, Z.: 1970, Solar Phys. 13, 471.

    Google Scholar 

  • Švestka, Z.: 1973, Solar Phys. 31, 389.

    Google Scholar 

  • Syrovatskii, S. I.: 1972a, in E. Dyer (ed.), Solar Terrestrial Physics, Part I, D. Reidel, Dordrecht-Holland, p. 119.

    Google Scholar 

  • Syrovatskii, S. I.: 1972b, Comm. Astrophys. Space Phys. 4, 65.

    Google Scholar 

  • Uchida, Y.: 1974, paper in preparation.

  • Uchida, Y., Altschuler, M. D., and Newkirk, G.: 1973, Solar Phys. 28, 459.

    Google Scholar 

  • Vorpahl, J. A.: 1972, Solar Phys. 26, 397.

    Google Scholar 

  • Vrabec, D.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’, IAU Symp. 43, 329.

  • Wentzel, D. G.: 1964, in W. N. Hess (ed.), The Physics of Solar Flares, NASA Symp., p. 397.

  • Westin, H.: 1969, Solar Phys. 7, 393.

    Google Scholar 

  • Wild, J. P. and Smerd, S. F.: 1972, Ann. Rev. Astron. Astrophys. 10, 159.

    Google Scholar 

  • Wilson, P. R.: 1972, Solar Phys. 22, 434.

    Google Scholar 

  • Zirin, H. and Tanaka, K.: 1973, Solar Phys. 32, 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piddington, J.H. The Alfvén-wave theory of solar flares. Sol Phys 38, 465–481 (1974). https://doi.org/10.1007/BF00155082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00155082

Keywords

Navigation