Skip to main content
Log in

Large scale circulation in the convection zone and solar differential rotation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this paper we study the dependence on depth and latitude of the solar angular velocity produced by a meridian circulation in the convection zone, assuming that the main mechanism responsible for setting up and driving the circulation is the interaction of rotation with convection. We solve the first order equations (perturbation of the spherically symmetric state) in the Boussinesq approximation and in the steady state for the axissymmetric case. The interaction of convection with rotation is modelled by a convective transport coefficient k c = k co + ℰk c2 P 2(cos θ) where ℰ is the expansion parameter, P 2 is the 2nd Legendre polynomial and k c2 is taken proportional to the local Taylor number and the ratio of the convective to the total fluxes. We obtain the following results for a Rayleigh number 103 and for a Prandtl number 1:

  1. (1)

    A single cell circulation extending from poles to the equator and with circulation directed toward the equator at the surface. Radial velocities are of the order of 10 cm s−1 and meridional ones of the order of 150 cm s−1.

  2. (2)

    A flux difference between pole and equator at the surface of about 5 percent, the poles being hotter.

  3. (3)

    An angular velocity increasing inwards.

  4. (4)

    Angular velocity constant surfaces of spheroidal shape.

    The model is consistent with the fact that the interaction of convection with rotation sets up a circulation (driven by the temperature gradient) which carries angular momentum toward the equator against the viscous friction. Unfortunately also a large flux variation at the surface is obtained. Nevertheless it seems that the model has the basic requisites for correct dynamo action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altrock, R. C. and Canfield, R. C.: 1972, Solar Phys. 23, 257.

    Google Scholar 

  • Baker, N. and Temesvary, S.: 1966, Tables of Convective Stellar Envelope Models, 2nd ed., Goddard Inst. Space Studies, New York.

    Google Scholar 

  • Biermann, L.: 1951, Z. Astrophys. 28, 304.

    Google Scholar 

  • Busse, F. H.: 1970, Astrophys. J. 159, 629.

    Google Scholar 

  • Busse, F. H.: 1973, Astron. Astrophys. 28, 27.

    Google Scholar 

  • Caccin, B., Falciani, R., Moschi, G., and Rigutti, M.: 1970, Solar Phys. 13, 33.

    Google Scholar 

  • Cocke, W. J.: 1967, Astrophys. J. 150, 1041.

    Google Scholar 

  • Dicke, R. H. and Goldmberg, H. M.: 1967, Phys. Rev. Letters 18, 313.

    Google Scholar 

  • Durney, B. R.: 1970, Astrophys. J. 161, 1115.

    Google Scholar 

  • Durney, B. R.: 1971, Astrophys. J. 163, 353.

    Google Scholar 

  • Durney, B. R. and Roxburgh, I. W.: 1971, Solar Phys. 16, 3.

    Google Scholar 

  • Durney, B. R.: 1972, Solar Phys. 26, 3.

    Google Scholar 

  • Durney, B. R.: 1974a, Astrophys. J. 190, 211.

    Google Scholar 

  • Durney, B. R.: 1974b, Solar Phys. 38, 301.

    Google Scholar 

  • Falciani, R., Rigutti, M., and Roberti, G.: 1974, Solar Phys. 35, 277.

    Google Scholar 

  • Foukal, P.: 1972, Astrophys. J. 190, 199.

    Google Scholar 

  • Gierasch, P. J.: 1974, Astrophys. J. 190, 199.

    Google Scholar 

  • Gilman, P. A.: 1972, Solar Phys. 27, 3.

    Google Scholar 

  • Gilman, P. A.: 1975, private communication.

  • Hill, H. A., Stebbins, R. T., and Brown, T. M.: 1975, Recent Solar Oblateness Observations, Data, Interpretation on Significance for Earlier Work, Preprint of Proc. Fifth Inter. Conference Atomic Masses and Fundamental Constants, Paris June 1975.

  • Howard, R. and Harvey, J.: 1970, Solar Phys. 12, 23.

    Google Scholar 

  • Howard, R.: 1971, Solar Phys. 16, 21.

    Google Scholar 

  • Kippenhahn, R.: 1963, Astrophys. J. 137, 664.

    Google Scholar 

  • Köhler, H.: 1970, Solar Phys. 13, 3.

    Google Scholar 

  • Livingston, W. C.: 1969, Solar Phys. 7, 144.

    Google Scholar 

  • Newton, H. W. and Nunn, M. L.: 1951, Monthly Notices Roy. Astron. Soc. 111, 413.

    Google Scholar 

  • Osaki, Y.: 1970, Monthly Notices Roy. Astron. Soc. 131, 407.

    Google Scholar 

  • Roxburgh, I. W.: 1969, IAU Coll. 4.

  • Roxburgh, I. W.: 1974, Astrophys. Space Sci. 27, 419.

    Google Scholar 

  • Roxburgh, I. W.: 1975, private communication.

  • Sakurai, T.: 1966, Publ. Astron. Soc. Japan 18, 174.

    Google Scholar 

  • Stix, M.: 1975, private communication.

  • Weiss, N. O. 1964, Monthly Notices Roy. Astron. Soc. 128, 225.

    Google Scholar 

  • Yoshimura, H. and Kato, S.: 1971, Publ. Astron. Soc. Japan 23, 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belvedere, G., Paternò, L. Large scale circulation in the convection zone and solar differential rotation. Sol Phys 47, 525–539 (1976). https://doi.org/10.1007/BF00154761

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154761

Keywords

Navigation