Skip to main content
Log in

Numerical experiments on ice age climates

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Numerical experiments with a hemispheric thermodynamic model are carried out, using present and ice age conditions. The computed surface temperatures for 18,000 years ago are in good agreement with the CLIMAP values. It is shown that the snow-ice cap that existed in the summer 18,000 years ago created a feedback mechanism which was responsible for perpetuating these ice age conditions. The increase of insolation due to orbital variations was responsible, at least in part, for the shrinkage of the snow-ice cap from 18,000 to 8,000 years ago. It is shown that the effect on the earth-atmosphere system of the changes in insolation due to the orbital variations depends on the preexisting snow-ice cap. It is significant for the ice cap that existed 18,000 years ago and insignificant for present conditions. The numerical experiments suggest that the evolution of climate depends in an important way on the initial snow-ice conditions. Therefore, according to the model the problem of simulating the evolution of climate is not determined if one does not prescribe these snow-ice conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adem, J.: 1964, ‘On the physical basis for the numerical prediction of monthly and seasonal temperatures in the troposphere-ocean-continent system’. Mon. Wea. Rev. 92, 91–104.

    Google Scholar 

  • Adem, J.: 1965a, ‘Experiments aiming at monthly and seasonal numerical weather prediction’. Mon. Wea. Rev. 93, 495–503.

    Google Scholar 

  • Adem, J.: 1965b, ‘Preliminary model for computing mid-tropospheric and surface temperatures from satellite data’. J. Geophys. Res. 70, 376–386.

    Google Scholar 

  • Adem, J.: 1970a, ‘On the prediction of mean monthly ocean temperature’. Tellus 22, 410–430.

    Google Scholar 

  • Adem, J.: 1970b, ‘Incorporation of advection of heat by mean winds and by ocean currents in a thermodynamic model for long-range weather prediction’. Mon. Wea. Rev. 98, 776–786.

    Google Scholar 

  • Adem, J.: 1979, ‘Low resolution thermodynamic grid models’. Dyn. Atmos. Oceans 3, 433–451.

    Google Scholar 

  • Adhemar, J. F.: 1842, ‘Les revolutions de la mer deluges periodiques’, Paris.

  • Alyea, F. N.: 1972, ‘Numerical simulation of an ice-age paleo-climate’. Atmos. Sci. Pap. No. 193. Colorado State University 134 pp. (Available from NTIS, PB232823/5, or from Xerox University Microfilms, Ann Arbor, No. 72-13022).

  • Berger, A. L.: 1977, ‘Support for the astronomical theory of climatic change’. Nature 269, No. 5623, 44–45.

    Google Scholar 

  • Berger, A. L.: 1978, Private communication.

  • Birchfield, G. E.: 1977, ‘A study of the stability of a model continental ice sheet subject to periodic variations in heat input’, J. Geophys. Res. 82, 4909–4913.

    Google Scholar 

  • Budyko, M. I.: 1969, ‘Effect of solar radiation variations on the climate of the earth’. Tellus 21, 611–619.

    Google Scholar 

  • Clapp, P. F.: Scolnik, S. H., Taubensee, R. E., and Winninghoff, F. J.: 1965, ‘Parameterization of certain atmospheric heat sources and sinks for use in a numerical model for monthly and seasonal forecasting’. Unpublished study of Extended Forecast Division, U.S. Weather Bureau, Washington, D.C. U.S.A. (Copies available on request).

    Google Scholar 

  • CLIMAP Project Members: 1976, ‘The surface of the ice-age earth’. Science 191, 1131–1137.

    Google Scholar 

  • Croll, G.: 1875, ‘Climate and Time’. London.

  • Donn, W. L., and Shaw, D. M.: 1975, ‘The evolution of climate. Proceedings of the WMO/IAMAP Symposium on long-term climatic fluctuations’. Norwich, August 1975, WMO No. 421, XII 503 pp.

  • Donn, W. L., and Shaw, D. M.: 1977, ‘Model of climate evolution based on continental drift and polar wandering.’ Geological Society of America Bulletin 88, 390–396.

    Google Scholar 

  • Flint. R. F.: 1971, ‘Glacial and quaternary geology’. Wiley, New York. 892 pp.

    Google Scholar 

  • Gal-Chen, T., and Schneider, S. H.: 1976, ‘Energy balance climate modeling: Comparison of radiative and dynamic feedback mechanisms’. Tellus 28, 108–121.

    Google Scholar 

  • Gates, W. L.: 1976a, ‘The numerical simulation of ice-age climate with a global general circulation model’. J. Atmos, Sci. 33, 1844–1873.

    Google Scholar 

  • Gates, W. L.: 1976b, ‘Modelling the ice-age climate’. Science 191, 1138–1144.

    Google Scholar 

  • Hays, J. D., Imbrie, J., and Shackleton, N. J.: 1976, ‘Variations in the earth's orbit: Pacemaker of the ice-ages’. Science 194, 1121–1132.

    Google Scholar 

  • Imbrie, J., and Imbrie, J. Z.: 1980, ‘Modeling the climate response to orbital variations,’ Science 207, 943–953.

    Google Scholar 

  • Köppen, W., and Wegener, A.: 1924, ‘Die Klimate der geologischen Vorzeit’. Berlin.

  • Kukla, G.: 1975, ‘Missinglink between Milankovitch and climate’. Nature 253, 600.

    Google Scholar 

  • Manabe, S. and Hahn, D. G.: 1977, ‘Simulation of the tropical climate of an Ice Age’. J. Geophys. Res. 82, 3889–3911.

    Google Scholar 

  • Milankovitch, M.: 1920, Théorie Mathematique des phénomènes termiques produits par la radiation solaire’. Belgrade.

  • Milankovitch, M.: 1938, ‘Die Chronologie des Pleistocöns’. Bull. Acad. Sci. Math. et Nat. Belgrade 4, 49.

    Google Scholar 

  • Milankovitch, M.: 1941, ‘Canon of Insolation and the Ice-Age Problem’. Königlich Serbische Akademie, Beograd. English Translation by the Israel Program for Scientific Translations and published by the U. S. Department of Commerce and the National Science Foundation, Washington, D.C., U.S.A.

    Google Scholar 

  • Newell, R. E., and Herman, G. F.: 1975, ‘Diagnostic studies of the past ice age’. Proc. WMO/IAMAP Symp. Long-Term Climatic Fluctuations, No. 421. WMO Geneva, 293–300.

    Google Scholar 

  • Posey, J., and Clapp, P. F.: 1964, ‘Global distribution of normal surface albedo’. Geofisica Internacional 4, 38–48.

    Google Scholar 

  • Saltzman, B., and Vernekar, A. D.: 1971, ‘Note on the effect of earth orbital radiation variations on climate’. J. Geophys. Res. 18, 4195–4197.

    Google Scholar 

  • Saltzman, B., and Vernekar, A. D.: 1975, ‘A solution for the northern hemisphere climatic zonation during a glacial maximum’. Quaternary Res. 5, 307–320.

    Google Scholar 

  • Saltzman, B., and Moritz, R. E.: 1980, ‘A time-dependent climatic feedback system involving sea-ice extent, ocean temperature, and CO2’. Tellus 32, 93–118.

    Google Scholar 

  • Schneider, S. H., and Thompson, S. L.: 1979, ‘Ice Ages and orbital Variations: Some simple theory and modeling’. Quaternary Res. 12, 188–203.

    Google Scholar 

  • Sellers, W. D.: 1970, The effect of changes in the earth's obliquity on the distribution of mean annual sealevel temperatures. J. Appl. Meteor. 9, 960–961.

    Google Scholar 

  • Shaw, D. M., and Donn, W. L.: 1968, ‘Milankovitch radiation variations: A quantitative evaluation’. Science 162, 1270–1272.

    Google Scholar 

  • Simpson, G. C.: 1940, ‘Possible Causes of changes of climate and their limitations’. Proc. Linnean Soc. 190–219.

  • Suarez, M. J., and Held, I. M.: 1976, ‘Modelling climatic response to orbital parameter variations’. Nature 263, 46–47.

    Google Scholar 

  • Suarez, M. J., and Held, I. M.: 1979, ‘The sensitivity of an energy balance climate model to variations in the orbital parameters’. J. Geophys. Res. 84, 4825–4836.

    Google Scholar 

  • Weertman, J.: 1976, ‘Milankovitch solar radiation variations and ice age ice sheets sizes’. Nature 261, 17–20.

    Google Scholar 

  • Williams, J., Barry, R. G., and Washington, W. M.: 1974, ‘Simulation of the atmospheric circulation using the NCAR global circulation model with ice age boundary conditions’. J. Appl. Meteor. 13, 305–317.

    Google Scholar 

  • Woerkom, A. J. van: 1953, ‘The astronomical theory of climate changes’. In ‘Climate Change’, (H. Shapley, ed.), pp. 147–157 Harvard Univ. Press, Cambridge, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Lamont Doherty Geological Observatory contribution No. 3115.

Visiting Senior Research Associate at Lamont Doherty Geological Observatory, Columbia University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adem, J. Numerical experiments on ice age climates. Climatic Change 3, 155–171 (1981). https://doi.org/10.1007/BF00154434

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154434

Keywords

Navigation