Skip to main content
Log in

Influence of phase behavior on chemical flood transport phenomena

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A one-dimensional ternary two-phase simulator has been extended to include improved physical properties. These physical properties - such as phase behavior, interfacial tension, residual saturations, relative permeabilities, phase viscosities, wettability, capillary pressure, adsorption and dispersion - are modeled as concentration dependent functions. Their functionality completely controls the chemical flood transport phenomena.

In this paper, the influence of phase behavior, interfacial tension reduction, mobility control and wettability alteration on chemical flooding are analyzed. In a subsequent paper the influence of capillary pressure, adsorption, and physical and numerical dispersion will be presented. The main application of the simulator here presented is to describe enhanced oil recovery processes. It may also be applied to describe oil spill cleaning and groundwater contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-sectional area of reservoir (cm2)

Ad:

adsorbed volume of component per unit volume of the porous medium

D :

dispersion coefficient (cm2/s)

e :

relative permeability exponent

F :

interfacial tension factor defined in Equation (11)

G 1, G 2 :

interfacial tension parameters, defined in Equations (10)

K :

absolute permeability (Darcy)

K c :

chemical partition coefficient, defined in Equation (3)

k r :

relative permeability

L :

length of system (cm)

L supcinfa :

solubilization parameter, defined in Equation (1)

L supwcinf0 :

swelling parameter, defined in Equation (2)

N VC :

capillary number, defined in Equation (4)

NX :

total number of grid blocks

P :

pressure (atm)

P c :

capillary pressure (atm)

P e :

pressure at the outlet boundary (atm)

S :

saturation

S ar :

aqueous phase residual saturation

S Or :

oleic phase residual saturation

t :

time (s)

T supjinf1 , T supjinf2 :

j-phase trapping parameters, defined in Equations (5), (6) and (7)

u :

Darcy's velocity (cm/s)

V :

volume fraction

x :

distance along porous sample (cm)

Z :

overall concentration

α 1, α 2, α 3 :

phase viscosity parameters defined in Equation (14)

λ :

A phase mobility, defined in Equations (A-4) and (A-5)

σ :

interfacial tension (dyne/cm)

σ supmininfj :

minimum interfacial tension value, below which the j-phase is thoroughly desaturated dyne/cm)

φ :

porosity

μ :

viscosity (cp)

ε :

iteration error

i :

component

c :

chemical component

D :

dimensionless

m :

grid block number

p :

petroleum component

w :

water component

s :

slug

0:

endpoint of function

a :

aqueous phase

H :

water-oil (no chemical) high interfacial tension system

IN :

injection

j :

phase

k :

iteration level

n :

time-step number

o :

oleic phase

r :

residual

References

  • Aziz, K. A. and Settari, A.: 1979, Petroleum Reservoir Simulation, Elsevier, New York.

    Google Scholar 

  • Anderson, D. R., Bidner, M. S., Davis, H. T., Manning, C. D. and Scriven, L. E.: 1976, Interfacial tension and phase behavior in surfactant-brine-Oil Systems, SPE paper number 5811, presented at the Improved Oil Recovery Symposium, Tulsa, Oklahoma, March 22–24.

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, American Elsevier, New York.

    Google Scholar 

  • Camilleri, D., Engelsen, S., Lake, L. W., Lin, E. C., Ohno, T., Pope, G. A. and Sephernoori, K.: 1987a, Description of an improved compositional micellar/polymer simulator, Soc. Pet. Eng. Res. Eng. 2(4), 427–432.

    Google Scholar 

  • Camilleri, D., Fil, A., Pope, G. A., Rouse, B. A. and Sepehrnoori, K.: 1987b, Improvements in physical-property models used in micellar/polymer flooding, Soc. Pet. Eng. Res. Eng. 2(4), 433–440.

    Google Scholar 

  • Camilleri, D., Fil, A., Pope, G. A., Rouse, G. A. and Sepehrnoori, K.: 1987c, Comparison of an improved compositional micellar/polymer simulator with laboratory corefloods, Soc. Pet. Eng. Res. Eng. 2(4), 441–451.

    Google Scholar 

  • Douglas, J., Jr.: 1983, Finite difference methods for two-phase incompressible fluid flow in porous media, SIAM J. Numer. Anal. 2(4), 686–696.

    Google Scholar 

  • Chaudhari, N. M.: 1971, An improved numerical technique for solving multidimensional miscible displacement equations, Soc. Pet. Eng. J. 11(4), 277–284.

    Google Scholar 

  • Chaudhari, N. M.: 1973, Numerical simulation with second-order accuracy for multicomponent stable miscible flow, Soc. Pet. Eng. J. 13(2), 84–92.

    Google Scholar 

  • Fanchi, J. R.: 1983, Multidimensional numerical dispersion, Soc. Pet. Eng. J. 23(1), 143–151.

    Google Scholar 

  • Fleming, P. D., Thomas, C. P., Winter, W. K.: 1981, Formulation of a general multiphase multicomponent chemical flood model, Soc. Pet. Eng. J. 21(1), 63–76.

    Google Scholar 

  • Helfferich, F. G.: 1981, Theory of multicomponent, multiphase displacement in porous media, Soc. Pet. Eng. J. 21(1), 51–62.

    Google Scholar 

  • Hirasaki, G. J.: 1981, Application of the theory of multicomponent, multiphase displacement to three-component, two-phase surfactant flooding, Soc. Pet. Eng. J. 21(2), 191–204.

    Google Scholar 

  • Lake, L. W., Pope, G. A., Carey, G. F. and Sepehrnoori, K.: 1984, Isothermal, multiphase, multicomponent fluid flow in permeable media - Part I: Description and mathematical formulation, In Situ 8(1), 1–40.

    Google Scholar 

  • Larson, R. G. and Hirasaki, G. J.: 1978, Analysis of the physical mechanisms in surfactant flooding, Soc. Pet. Eng. J. 18(1), 42–58.

    Google Scholar 

  • Larson, R. G.: 1979, The influence of phase behavior on surfactant flooding, Soc. Pet. Eng. J. 19(6), 411–422.

    Google Scholar 

  • Larson, R. G., Davis, H. T. and Scriven, L. E.: 1982, Elementary mechanisms of oil recovery by chemical methods, J. of Pet. Tech. 34, 243–258.

    Google Scholar 

  • Nelson, R. C. and Pope, G. A.: 1978, Phase relationships in chemical flooding, Soc. Pet. Eng. J. 18(5), 325–338.

    Google Scholar 

  • Peaceman, D. W.: 1977, Fundamentals of Numerical Reservoir Simulation, Elsevier Amsterdam, pp. 65–81.

    Google Scholar 

  • Pope, G. A. and Nelson, R. C.: 1978, A chemical flooding compositional simulator, Soc. Pet. Eng. J. 18(5), 339–354.

    Google Scholar 

  • Pope, G. A., Wang, B. and Tsaur, K.: 1979, A sensitivity study of micellar/polymer flooding, Soc. Pet. Eng. J. 19(6), 357–368.

    Google Scholar 

  • Pope, G, A., Carey, G. F. and Sepehrnoori, K.: 1984, Isothermal, multiphase, multicomponent fluid flow in permeable media, Part II: Numerical techniques and solutions, In Situ 8(1), 41–97.

    Google Scholar 

  • Porcelli, P. C. and Bidner, M. S.: 1992, Modelización de la inundación, química de yacimientos petrolíferos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 8(2), 157–175.

    Google Scholar 

  • Porcelli, P. C. and Bidner, M. S.: 1994, Simulation and transport phenomena of a ternary two-phase flow, Transport in Porous Media 14(2), 1–20.

    Google Scholar 

  • Saad, N., Pope, G. A. and Sepehrnoori, K.: 1989, Simulation of big muddy surfactant pilot, Soc. Pet. Eng. Res. Eng. 4(1), 24–34.

    Google Scholar 

  • Saad, N., Pope, G. A. and Sepehrnoori, K.: 1990, Application of higher-order methods in compositional simulation, Soc. Pet. Eng. Res. Eng. 5(4), 623–630.

    Google Scholar 

  • Thomas, C. P., Fleming, P. D. and Winter, W. K.: 1984, A ternary, two-phase, mathematical model of oil recovery with surfactant systems, Soc. Pet. Eng. J. 24(6), 606–616.

    Google Scholar 

  • Van Quy, N. and Labrid, J.: 1983, A numerical study of chemical flooding-comparison with experiments, Soc. Pet. Eng. J. 23(3), 461–474.

    Google Scholar 

  • Yortsos, Y. C. and Fokas, A. S.: 1983, An analytical solution for the linear waterflood including the effects of capillary pressure, Soc. Pet. Eng. J. 23(1), 115–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidner, M.S., Porcelli, P.C. Influence of phase behavior on chemical flood transport phenomena. Transp Porous Med 24, 247–273 (1996). https://doi.org/10.1007/BF00154093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154093

Key words

Navigation