Skip to main content
Log in

MHD shock interactions in coronal structures

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We consider the magnetohydrodynamic (MHD) interactions of solar coronal fast shock waves of flare and/or nonflare origin with the boundaries of coronal streamers and coronal holes. Boundaries are treated as MHD tangential discontinuities (TD). Different parameters of the observed corona are used in the investigation. The general case of the oblique interaction is studied.

It is shown that a solar fast shock wave must be refracted usually as a fast shock wave inside the coronal streamer. For the special case of the velocity shear across TD, a slow shock wave is generated. On the contrary, the shock wave refracted inside the coronal hole is indeed a slow shock wave.

The significance of different effects due to the interaction of fast and slow shock waves on the coronal magnetic field is noticed, especially at the time of a coronal mass ejection (CME). It is also shown, that an oblique fast MHD coronal shock wave may trigger an instability at the boundary of a streamer considered as a TD. It might have a relation with the observed process of abrupt disappearance of the streamer's boundary in the solar corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axford, W. L: 1985, Solar Phys. 100, 575.

    Google Scholar 

  • Axford, W. I. and McKenzie, J. F.: 1992, Solar Wind Seven. Proc. of 3 COSPAR Colloq., p. 1.

  • Barmin, A. A., Pushkar, E. A., and Grib, S. A.: 1991, Geomagn. Aeron. 31, 522.

    Google Scholar 

  • Barnes, A.: 1966, Phys. Fluids 6, 1483.

    Google Scholar 

  • Barnes, A.: 1968, Astrophys. J. 154, 751.

    Google Scholar 

  • Bazer, J. and Ericson, W. B.: 1961, Proceedings of the Symposium on Electromagnetics and Fluid Dynamics of Gaseous Plasma, Polytech. Press, New York, p. 387.

    Google Scholar 

  • Burlaga, L. F. and Chao, J. K.: 1971, J. Geophys. Res. 76, 7516.

    Google Scholar 

  • Chao, J. K. and Olbert, S.: 1970, J. Geophys. Res. 75, 6394.

    Google Scholar 

  • Dryer, M., Detman, T. R., Wu, S. T., and Han, M.: 1989, Adv. Space Res. 9 (4), 75.

    Google Scholar 

  • Feldman, W. C., Schwartz, S. J., Bame, S. J. et al.: 1984, Geophys. Res. Letters 11, 599.

    Google Scholar 

  • Grib, S. A. and Sazonova, V. N.: 1991, Soln. Dann. No. 11, 92.

  • Grib, S. A., Brunelli, B. E., Dryer, M., and Shen, W. W.: 1979, J. Geophys. Res. 84, 5907.

    Google Scholar 

  • Hundhausen, A. J., Holzer, T. E., and Low, B. C.: 1987, J. Geophys. Res. 92, 11173.

    Google Scholar 

  • Kahler, S. W. and Hundhausen, A. J.: 1992, J. Geophys. Res. 97, 1619.

    Google Scholar 

  • Koutchmy, S.: 1971, Astron. Astrophys. 13, 79.

    Google Scholar 

  • Koutchmy, S.: 1977, Solar Phys. 51, 399.

    Google Scholar 

  • Koutchmy, S.: 1988, Proc. of the Ninth Sacramento Peak Summer Workshop on Solar and Stellar Coronal Structure and Dynamics, Sunspot, New Mexico, 17–21 August, 1987, p. 208.

  • Koutchmy, S., Fagot J., Dzubenko, N. I. et al.: 1973, Nature 246, 414.

    Google Scholar 

  • Kulikovskiy, A. G. and Lubimov, G. A.: 1962, Magnetic Hydrodynamics, Moscow.

  • Landau, L. and Lifshitz, E.: 1960, Electrodynamics of Continuous Media, Addison-Wesley, Inc., U.S.A., p. 228.

    Google Scholar 

  • Neubauer, F. M.: 1975, J. Geophys. Res. 80, 1213.

    Google Scholar 

  • Neubauer, F. M.: 1976, J. Geophys. Res. 81, 2248.

    Google Scholar 

  • Neugebauer, M., Clay, D. R., Goldstein, B. E., Tsurutani B. T., and Zwickl, R. D.: 1984, J. Geophys. Res. 89, 5395.

    Google Scholar 

  • Northrop, T. G. and Birmingham, T. J.: 1970, Solar Phys. 14, 226.

    Google Scholar 

  • Parker, E. N.: 1986, Astrophys. J. 318, 876.

    Google Scholar 

  • Parker, E. N.: 1990, Geophys. Res. Letters 17, 2055.

    Google Scholar 

  • Parker, E. N.: 1992, Solar Wind Seven. Proc. of 3 COSPAR Colloq., p. 79.

  • Priest, E. R.: 1982, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland, p. 469.

    Google Scholar 

  • Pushkar, E. A.: 1979, Izv. AN SSSR MZG Mechanics of Fluids and Gases 3, 111.

    Google Scholar 

  • Richter, A. K. and Lutrell, A. H.: 1987, J. Geophys. Res. 92, 1365.

    Google Scholar 

  • Richter, A. K.: 1991, Phys. Chem. Solar Space Solar Phys. 21, 45.

    Google Scholar 

  • Smith, E. J., Slavin, J. A., Tsurutani, B.T. et al.: 1984, Geophys. Res. Letters 11, 1054.

    Google Scholar 

  • Wang, A. H., Wu, S. T., Suess, S. T., and Poletto, G.: 1993, Solar Phys. 147, 55.

    Google Scholar 

  • Whang, Y. C.: 1986, EOSAGU 67, 327.

    Google Scholar 

  • Whang, Y. C.: 1991, Astrophys. J. 377, 255.

    Google Scholar 

  • Whitehead, J.: 1971, J. Geophys. Res. 76, 3127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Academy of Sciences, Central Astronomical Observatory Pulkovo, 196140, St. Petersburg, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grib, S.A., Koutchmy, S. & Sazonova, V.N. MHD shock interactions in coronal structures. Sol Phys 169, 151–166 (1996). https://doi.org/10.1007/BF00153838

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153838

Keywords

Navigation