Skip to main content
Log in

Alfvén waves in the solar atmosphere

III. Nonlinear waves on open flux tubes

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The nonlinear propagation of Alfvén waves on open solar magnetic flux tubes is considered. The flux tubes are taken to be vertical and axisymmetric, and they are initially untwisted. The Alfvén waves are time-dependent axisymmetric twists. Their propagation into the chromosphere and corona is investigated by solving numerically a set of nonlinear time-dependent equations, which couple the Alfvén waves into motions parallel to the initial magnetic field (motion in the third coordinate direction is artificially suppressed). The principal conclusions are: (1) Alfvén waves can steepen into fast shocks in the chromosphere. These shocks can pass through the transition region into the corona, and heat the corona. (2) As the fast shocks pass through the transition region, they produce large-velocity pulses in the direction transverse to B o. The pulses typically have amplitudes of 60 km s−1 or so and durations of a few tens of seconds. Such features may have been observed, suggesting that the corona is in fact heated by fast shocks. (3) Alfvén waves exhibit a strong tendency to drive upward flows, with many of the properties of spicules. Spicules, and the observed corrugated nature of the transition region, may therefore be by-products of magnetic heating of the corona. (4) It is qualitatively suggested that Alfvén waves may heat the upper chromosphere indirectly by exerting time-dependent forces on the plasma, rather than by directly depositing heat into the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, A.: 1979, in L. J. Lanzerotti, C. F. Kennel, and E. N. Parker (eds.), Solar System Plasma Physics, Vol. I, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Barnes, A. and Hollweg, J. V.: 1974, J. Geophys. Res. 79, 2302.

    Google Scholar 

  • Beckers, J. M.: 1968, Solar Phys. 3, 367.

    Google Scholar 

  • Beckers, J. M.: 1972, Ann. Rev. Astron. Astrophys. 10, 73.

    Google Scholar 

  • Boris, J. P.: 1976, Naval Research Laboratory Memorandum Report 3237.

  • Boris, J. P. and Book, D. L.: 1973, J. Computational Phys. 11, 38.

    Google Scholar 

  • Boris, J. P. and Book, D. L.: 1976, J. Computational Phys. 20, 397.

    Google Scholar 

  • Boyd, T. J. M. and Sanderson, J. J.: 1969, Plasma Dynamics, Barnes and Noble, New York.

    Google Scholar 

  • Brueckner, G.: 1980, in P. A. Wayman (ed.), Highlights of Astronomy 5, 557.

  • Cohen, R. and Kulsrud, R.: 1974, Phys. Fluids 17, 2215.

    Google Scholar 

  • Feldman, U., Doschek, G. A., and Mariska, J. T.: 1979, Astrophys. J. 229, 369.

    Google Scholar 

  • Gabriel, A. H.: 1976, in R. M. Bonnet and Ph. Delache (eds.), IAU Colloq. 36, 375.

  • Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y.: 1971, Solar Phys. 18, 347.

    Google Scholar 

  • Hollweg, J. V.: 1971, J. Geophys. Res. 76, 5155.

    Google Scholar 

  • Hollweg, J. V.: 1978a, Solar Phys. 56, 305.

    Google Scholar 

  • Hollweg, J. V.: 1978b, Rev. Geophys. Space Phys. 16, 689.

    Google Scholar 

  • Hollweg, J. V.: 1981a, Solar Phys. 70, 25.

    Google Scholar 

  • Hollweg, J. V.: 1981b, in F. Q. Orrall (ed.), Proc. Skylab Active Region Workshop, in press.

  • Huber, M. C. E., Foukal, P. V., Noyes, R. W., Reeves, E. M., Schmahl, E. J., Timothy, J. G., Vernazza, J. E., and Withbroe, G. L.: 1974, Astrophys. J. 194, L115.

    Google Scholar 

  • Kjeldseth Moe, O. and Nicolas, K. R.: 1977, Astrophys. J. 211, 579.

    Google Scholar 

  • Livshits, M. A.: 1967, Soviet Astron.-A.J. 10, 570.

    Google Scholar 

  • Mariska, J. T., Feldman, U., and Doschek, G. A.: 1978, Astrophys. J. 226, 698.

    Google Scholar 

  • Meyer, F.: 1976, in R. M. Bonnet and Ph. Delache (eds.), IAU Colloq. 36, 124.

  • Montgomery, D.: 1959, Phys. Rev. Letters 2, 36.

    Google Scholar 

  • Nikol'skii, G. M. and Sazanov, A. A.: 1967, Soviet Astron.-A.J. 10, 744.

    Google Scholar 

  • Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.

    Google Scholar 

  • Parker, E. N.: 1958, Phys. Rev. Ser. 2 109, 1328.

    Google Scholar 

  • Parker, E. N.: 1964, Astrophys. J. 140, 1170.

    Google Scholar 

  • Pasachoff, J. M., Noyes, R. W., and Beckers, J. M.: 1968, Solar Phys. 5, 131.

    Google Scholar 

  • Pikel'ner, S. B.: 1971, Comm. Astrophys. Space Phys. 3, 33.

    Google Scholar 

  • Rabin, D. and Moore, R. L.: 1980, Astrophys. J. 241, 394.

    Google Scholar 

  • Shine, R. A., Roussel-Dupre, D., Bruner, E. C., Jr., Chipman, E. G., Lites, B. W., Rottman, G. J., Athay, R. G., and White, O. R.: 1976, Astrophys. J. 210, L107.

    Google Scholar 

  • Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1973, Astrophys. J. 184, 605.

    Google Scholar 

  • Wentzel, D. G.: 1977, Solar Phys. 52, 163.

    Google Scholar 

  • Wentzel, D. G.: 1978, Solar Phys. 58, 307.

    Google Scholar 

  • Wentzel, D. G.: 1980, in S. Jordan (ed.), The Sun as a Star, in press.

  • Wentzel, D. G. and Solinger, A. B.: 1967, Astrophys. J. 148, 877.

    Google Scholar 

  • Withbroe, G. L., Jaffe, D. T., Foukal, P. V., Huber, M. C. E., Noyes, R. W., Reeves, E. M., Schmahl, E. J., Timothy, J. G., and Vernazza, J. E.: 1976, Astrophys. J. 203, 528.

    Google Scholar 

  • Wray, A.: 1972, Ph.D. Thesis, Calif. Inst. of Technology, Pasadena.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollweg, J.V., Jackson, S. & Galloway, D. Alfvén waves in the solar atmosphere. Sol Phys 75, 35–61 (1982). https://doi.org/10.1007/BF00153458

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153458

Keywords

Navigation