Skip to main content
Log in

Simulations of the sun's polar magnetic fields during sunspot cycle 21

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Regarding new bipolar magnetic regions as sources of flux, we have simulated the evolution of the radial component of the solar photospheric magnetic field during 1976–1984 and derived the corresponding evolution of the line-of-sight polar fields as seen from Earth. The observed timing and strength of the polar-field reversal during cycle 21 can be accounted for by supergranular diffusion alone, for a diffusion coefficient of 800 km2 s-1. For an assumed 300 km2 s-1 rate of diffusion, on the other hand, a poleward meridional flow with a moderately broad profile and a peak speed of 10 m s-1 reached at about 5° latitude is required to obtain agreement between the simulated and observed fields. Such a flow accelerates the transport of following-polarity flux to the polar caps, but also inhibits the diffusion of leading-polarity flux across the equator. For flows faster than about 10 m s-1 the latter effect dominates, and the simulated polar fields reverse increasingly later and more weakly than the observed fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock, H. D.: 1959, Astrophys. J. 130, 364.

    Google Scholar 

  • Babcock, H. W.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Babcock, H. W. and Babcock, H. D.: 1955, Astrophys. J. 121, 349.

    Google Scholar 

  • DeVore, C. R., Sheeley, N. R., Jr., and Boris, J. P.: 1984, Solar Phys. 92, 1.

    Google Scholar 

  • DeVore, C. R., Sheeley, N. R., Jr., Boris, J. P., Young, T. R., Jr., and Harvey, K. L.: 1985, Solar Phys. 102, 41.

    Google Scholar 

  • Duvall, T. L. Jr.: Solar Phys. 63, 3.

  • Duvall, T. L., Jr., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1979, Solar Phys. 61, 233.

    Google Scholar 

  • Giovanelli, R. G.: 1982, ‘The Mechanism of the Sunspot and Solar Magnetic Cycles as Inferred from Observation’, preprint.

  • Hale, G. E., Ellerman, F., Nicholson, S. B., and Joy, A. H.: 1919, Astrophys. J. 49, 153.

    Google Scholar 

  • Howard, R.: 1979, Astrophys. J. 228, L45.

    Google Scholar 

  • Howard, R. and LaBonte, B. J.: 1981, Solar Phys. 74, 131.

    Google Scholar 

  • LaBonte, B. J. and Howard, R.: 1982, Solar Phys. 80, 361.

    Google Scholar 

  • Leighton, R. B.: 1964, Astrophys. J. 140, 1547.

    Google Scholar 

  • Mosher, J. M.: 1977, ‘The Magnetic History of Solar Active Regions’, Ph.D. Dissertation, California Institute of Technology.

  • Sheeley, N. R., Jr., DeVore, C. R., and Boris, J. P.: 1985, Solar Phys. 98, 219.

    Google Scholar 

  • Sheeley, N. R., Jr., DeVore, C. R., and Shampine, L. R.: 1986, Solar Phys. 106, 251.

    Google Scholar 

  • Snodgrass, H. B.: 1983, Astrophys. J. 270, 288.

    Google Scholar 

  • Topka, K., Moore, R., LaBonte, B. J., and Howard, R.: 1982, Solar Phys. 79, 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Laboratory for Computational Physics and Fluid Dynamics.

E. O. Hulburt Center for Space Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVore, C.R., Sheeley, N.R. Simulations of the sun's polar magnetic fields during sunspot cycle 21. Sol Phys 108, 47–59 (1987). https://doi.org/10.1007/BF00152076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00152076

Keywords

Navigation