Skip to main content
Log in

Electric fields in coronal magnetic loops

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze spectra taken with the 40 cm coronograph at Sacramento Peak Observatory, for evidence of Stark effect on Balmer lines formed in coronal magnetic structures. Several spectra taken near the apex of a bright post-flare loop prominence show significant broadening from H10 to the limit of Balmer line visibility in these spectra, at about H20 The most likely interpretation of the increasing width is Stark broadening, although unresolved blends of Balmer emissions with metallic lines could also contribute to the trend. Less significant broadening is seen in 3 other post-flare loops, and the data from 5 other active coronal condensations observed in this study show no broadening tendency at all, over this range of Balmer number. The trend clearly observed in one post-flare loop requires an ion density of n i ≃ 2 × 1012 cm−3, if it is to be explained entirely as Stark effect caused by pressure broadening. But mean electron densities measured directly from the Thomson scattering at λ3875 in the same SPO spectra, yield n e ≲ 3−7 × 1010 cm−3 for the same condensations observed within that loop. Comparison of this evidence from electron scattering, with densities derived from emission measures and line-intensity ratios, argues against a volume filling factor small enough to reconcile the values of n i and n e derived in this study. This discrepancy leads us to suggest that the Stark effect observed in these loops, and possibly also in flares, could be caused by macroscopic electric fields, rather than by pressure broadening. The electric field required to explain the Stark broadening in the brightest post-flare loop observed here is approximately 170 V cm−1. We suggest an origin for such an electric field and discuss its implications for coronal plasma dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1977, Rev. Geophys. Space Phys. 15, 271.

    Google Scholar 

  • Cheng, C.: 1980, Astrophys. J. 238, 743.

    Google Scholar 

  • Chevalier, R. and Lambert, D.: 1970, Solar Phys. 11, 243.

    Google Scholar 

  • Davis, W.: 1977, Solar Phys. 54, 139.

    Google Scholar 

  • Dere, K.: 1982, Solar Phys. 75, 189.

    Google Scholar 

  • Dunn, R., Evans, J., Jefferies, J., Orrall, F., White, O., and Zirker, J.: 1968, Astrophys. J. Suppl. 15, 279.

    Google Scholar 

  • Feldman, U. and Doschek, G.: 1977, Astrophys. J. 212, 913.

    Google Scholar 

  • Fisher, R.: 1974, Solar Phys. 35, 401.

    Google Scholar 

  • Foukal, P.: 1975, Solar Phys. 43, 327.

    Google Scholar 

  • Foukal, P.: 1976, Astrophys. J. 210, 575.

    Google Scholar 

  • Foukal, P.: 1978, Astrophys. J. 223, 1046.

    Google Scholar 

  • Griem, H.: 1960, Astrophys. J. 132, 883.

    Google Scholar 

  • Griem, H.: 1974, Spectral Line Broadening by Plasmas, Academic Press.

  • Hinata, S.: 1979, Astrophys. J. 232, 915.

    Google Scholar 

  • Hinata, S.: 1981, preprint.

  • Hirayama, T.: 1961, Publ. Astron. Soc. Japan 13, 152.

    Google Scholar 

  • Hirayama, T.: 1963, Publ. Astron. Soc. Japan 15, 122.

    Google Scholar 

  • Holtsmark, J.: 1919, Ann. Phys. 58, 577.

    Google Scholar 

  • Ivanov-Kholodnyi, G.: 1959, Astron. Zh. 36, 589.

    Google Scholar 

  • Jefferies, J. and Orrall, F.: 1958, Astrophys. J. 127, 714.

    Google Scholar 

  • Jefferies, J. and Orrall, F.: 1961, Astrophys. J. 133, 946.

    Google Scholar 

  • Jordan, C., Bartoe, J. D., and Brueckner, G.: 1980, Astrophys. J. 240, 702.

    Google Scholar 

  • Kopp, R. and Pneuman, G.: 1976, Solar Phys. 50, 85.

    Google Scholar 

  • Kurochka, L.: 1969, Soviet Astron. 13, 64.

    Google Scholar 

  • Levine, R. and Withbroe, G.: 1977, Solar Phys. 51, 83.

    Google Scholar 

  • Petrasso, R., Nolte, J., Gerassimenko, M., Krieger, A., Krogstad, R., Seguin, F., and Švestka, Z.: 1979, Solar Phys. 62, 133.

    Google Scholar 

  • Redman, R. and Suemoto, Z.: 1954, Monthly Notices Roy. Astron. Soc. 114, 238.

    Google Scholar 

  • Rosenberg, F., Feldman, U., and Doschek, G.: 1977, Astrophys. J. 212, 905.

    Google Scholar 

  • Stern, D.: 1977, Rev. Geophys. Space Phys. 15, 156.

    Google Scholar 

  • Švestka, Z. and Fritzová-Švestková, L.: 1967, Solar Phys. 2, 75.

    Google Scholar 

  • Underhill, A. and Waddell, J.: 1959, NBS Circ., No. 604.

  • Vernazza, J., Avrett, E., and Loeser, R.: 1981, Astrophys J. Suppl. 45, 635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Visiting Astronomer, Sacramento Peak Observatory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foukal, P., Miller, P. & Gilliam, L. Electric fields in coronal magnetic loops. Sol Phys 83, 83–102 (1983). https://doi.org/10.1007/BF00148244

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00148244

Keywords

Navigation