Skip to main content
Log in

The comparative genotoxicological study of new local anesthetics, 3-(2-alkoxyphenylcarbamoyloxy) quinuclidium chlorides, onSalmonella typhimurium, Saccharromyces cerevisiae, Vicia faba, Hordeum vulgare andDrosophila melanogaster

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Potential gentoxitity of five new local anesthetics, derivatives of phenylcarbamic acid differing in the length of the alkyl chain of the alkoxy substituent, was studied on five test systems. There was a direct relationship with increased toxic effect in bacteria and yeast as a function of the elongation of the alkyl chain of the alkoxy substituents of the phenylcarbamic acid esters. On the other hand, no structure-toxicity relationship was found after application of 3-(2-alkoxyphenylcarbamoyloxy)-quinuclidium chlorides on plants andDrosophila. All anesthetics were nonmutagenic toSalmonella typhimurium strains TA97, TA98, TA100, and TA102 in the absence and in the presence of S9 mix. Pentyloxy and heptyloxy derivatives increased rates of genetic changes inSaccharomyces cerevisiae, mainly revertants at the isoleucine locus. Pentyloxy and hexyloxy derivatives increased the frequency of chromosome aberrations inVicia faba root-tip meristems. No chlorophyll mutations were detected after treatment ofHordeum vulgare with pentyloxy, hexyloxy and heptyloxy derivatives. No sex-linked recessive lethals were scored inDrosphila melanogaster males. The rates of aneuploids induced in their germ cells were significantly increased after treatment with butoxy and octyloxy derivatives. However, the local toxic and genotoxic effects of test anesthetics on the microorganisms of the anesthetized tissues may be of some importance. In particular, the genotoxic effect exhibited in fungi by the heptyloxy derivative, a potent local anesthetic, was remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedriss P, Dabadie P, Mazart JP, Letellier S, Erny P. Méchanismes moleculaires de l'action des anesthétiques locaux. Ann Anesth Réanim. 1988;7:89–97.

    Google Scholar 

  • Beneš L, Borovanský A, Kopáčová L. Basiche trans- und cis- Cyklo-hexylester Substitürer Alkoxycarbanilsäuren. Arch Pharm Weinheim. 1972;305:648–54.

    Google Scholar 

  • Blaško M, Chalupa I, Ujházy E, Hüklová S, Beneš L. Effect of antiulcerative drug pentacaine (trapencaine, I.N.N.) on human lymphocytes in vitro assessed by micronucleus test. Biologia. 1993;48:267–9.

    Google Scholar 

  • Brusick D. Evolution of testing strategy for genetic toxicity. Mutat Res. 1988;205:69–78.

    Google Scholar 

  • Bučiová L, Borovanský A, Čižmárik J et al. Studies of local anaesthetics LXXXIX. The study of the effect of modification in the connective chain on biological activity in a group of basic phenylcarbamates. Českoslov Farm. 1978;36:339–44 [In Slovak].

    Google Scholar 

  • Chalupa I, Blaško M, Siracký J et al. Micronucleus test of the local anaesthetic pentacaine on human fibroblastoid cells in vitro. Bratisl lek Listy. 1987;88:396–401. [In Slovak].

    Google Scholar 

  • Čižmárik J, Trupl J, Pešak M. A Correlation between anti-microbial activity toStaphylococcus aerus and selected physico-chemical parameters in the series of hydrochlorides of piperidinoethylesters of alkoxysubstituted phenylcarbamic acids. Českoslov Farm. 1987;36:345–66. [In Slovak].

    Google Scholar 

  • Csöllei J. 1-Methyl-2-(2-aminoethoxy) esters of alkoxysubstituted phenylcarbamic acids and their effects on photosysthesis inhibition. Českoslv Farm. 1993;42:265–7. [In Slovak].

    Google Scholar 

  • Dúhová V, Blaškovičová M, Miadokovâ E. Phytotoxic and clastogenic effects of new local anaesthetics 3-(2-alkoxyphenylcarbamoyloxy) quinuclidium chlorides onVici sativa L. Biologia. 1996;51:37–41.

    Google Scholar 

  • Ehrenberg L. Higher plants (test systems). In: Hollander A, ed. Chemical mutagens. vol. 2. New York Pleum Press; 1971:365–86.

    Google Scholar 

  • Gregáň F, Novometský P, Racčanská E, Kettmann V. Synthesis and local anaesthetic activity of some derivatives ofN,N-dimethyl-2-(2-alkoxyphenylcarbamoyloxy)-1,1-dimethylamonium chlorides. Farmaco. 1992;47:327–34.

    Google Scholar 

  • Gregán F, Ďurinda J, Račanska E, Zámocká J. Synthesis and local anaesthetic activities of 3-(2-alkoxyphenylcarbamoyloxy) quinuclidium chlorides. Pharmazie. 1993;48:465–6.

    Google Scholar 

  • Kanaya N, Gill BS, Grover IS et al. Vicia faba chromosomal aberration assay. Mutat Res. 1994;310:231–47.

    Google Scholar 

  • Král'ová K, Šeršeň F. Effects of alkyl chain lenght of membrane-active, polysubstituted ammonium compounds on photosynthesis and growth. Phtosynthetica. 1991;25:455–7.

    Google Scholar 

  • Král'ová K, SŠeršeň F, Csöllei J. Inhibitory effect of piperidinoesters of alkoxyphenylcarbamic on photsythesis. Gen Physiol Biophys. 1992;11:61–7.

    Google Scholar 

  • Laash H, Weis E. Differential sensitivity to dibucaine or photsynthetic control of electron transport and photophosphorylation in chloroplast. Biochim Biophys Acta. 1988;936:99–107.

    Google Scholar 

  • Lahitová N, Čižmárik J, Ebringer L. Effect of heptacaine and some intermediary products obtained during its synthesis onSalmonella typhimurium andEscherichia coli. Folia Microbiol. 1982;27:269–71.

    Google Scholar 

  • Maron DM, Ames BN. Revised methods for Salmonella mutagenicity test. Mutat Res. 1983;113:173–215.

    Google Scholar 

  • Miadoková E, Šepáková K, Podstavková S, Vlček D. Effects of 3-(2-alkoxyphenylcarbamyloxy) quinuclidium chlorides on repair-deficient straints ofChlamydomonas reinhardtii. Biol Plantarum. 1995; 37:15–9.

    Google Scholar 

  • Miadoková E, Šepáková K, Pldstavkoá S, Vlček D. Effects of 3-(2-alkoxyphenylcarbamloxy) quinuclidium chlorides on repair-deficient strains ofChlamydomonas reinhardtii. Biol Plantarum. 1995; 37:15–9.

    Google Scholar 

  • Mitterhauserová L, Král'ová K, Šeršeň F, Blanáriková V, Csöllei J. Effects of substituted aryloxyaminopropanols on photosynthesizing organisms. Physiol Biophys. 1991;10:309–19.

    Google Scholar 

  • Murin A. Simultaneous test of phytoxic and mutagenic effects of polluted waters and herbicidal chemicals. Biologia. 1984; 39:15–24. [In Slovak].

    Google Scholar 

  • Murín A, Čižmárik J. Effects of some local anaesthetics and intermediary products of their synthesis on chromosomes and mitoses in root tips ofVicia sativa L. Biologia. 1991;46:203–9. [In Slovak].

    Google Scholar 

  • Omenn GS. Future research direction in cancer ecogenetics. Mutat Res. 1991;294:283–91.

    Google Scholar 

  • Plochinskij J. Biometry. Moscow: Moscow University Press; 1970. [In Russian].

    Google Scholar 

  • Pokorná D, Zusková Z, Bucharová V, Čáp J. Pentacaine-hydrochloride-micronucleus test. Research announcement. VU HB: Prague; 1987. [In Czech]

    Google Scholar 

  • Račanský V, Béderová E, Pśková L. The influence of local anaesthetics on the gel-liquid crystal transition in model dipalmitoylphosphatidylcholine membrane. Gen Physiol Biophys. 1988;7:217–21.

    Google Scholar 

  • Reisenauer R. Methods of mathematical statistics and their application to technique. Prague: State Publ Techn Lit. 1970. [In Czech].

    Google Scholar 

  • Seelig A, Allegrini PR, Seelig J. Partitioning of local anaesthetics into membranes: surface charge effects monitored by the phospholipid head group. Biochim Biophys Acta. 1988;939:267–76.

    Google Scholar 

  • Seikel P. A genotoxicological study of the new local anaesthetic carbamate derivatives carbisocaine, heptacaine and pentacaine. J Appl Toxicol. 1990;10:239–43.

    Google Scholar 

  • Ujházy E, Zeljenková D, Balonová T, Chalupa I, Blaško M, Sirackú J A teratological and cytogenetic study of local anaesthetic pentacaine on rabbits. Čs Fyziol. 1989;38:278–84. [In Slovak].

    Google Scholar 

  • Würgler FE, Sobels FH, Vogel E. Drosophila assay system for detecting genetic changes. In: Kilbey BJ, Legator MS, Nichols W, eds. Handbook of mutagenicity test procedures. 2d ed. amssterdam: Elsevier; 1984:555–64.

    Google Scholar 

  • Zimmermann FK. Procedures used in the induction of mitotic recombination and mutation in the yeast.Sacharomyces cerevisiae. Mutat Res. 1975;31:71–86.

    Google Scholar 

  • Zimmermann FK, Kern R, Rasenberger R. A yeast strain for simultaneous detection of induced mitotic crossing-over, mitotic gene conversion and reverse mutation. Mutat Res 1975;31:381–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miadoková, E., Vlčková, V., Dúhová, V. et al. The comparative genotoxicological study of new local anesthetics, 3-(2-alkoxyphenylcarbamoyloxy) quinuclidium chlorides, onSalmonella typhimurium, Saccharromyces cerevisiae, Vicia faba, Hordeum vulgare andDrosophila melanogaster . Cell Biol Toxicol 12, 135–145 (1996). https://doi.org/10.1007/BF00148167

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00148167

Keywords

Navigation