Generation of rotational discontinuities by magnetic reconnection associated with microflares

Abstract

Magnetic reconnection can take place between two plasma regions with antiparallel magnetic field components. In a time-dependent reconnection event, the plasma outflow region consists of a leading bulge region and a trailing reconnection layer. Magnetohydrodynamic (MHD) discontinuities, including rotational discontinuities, can be formed in both the bulge region and the trailing layer. In this paper, we suggest that the rotational discontinuities observed in the solar wind may be generated by magnetic reconnection associated with microflares in coronal holes. The structure of the reconnection layer is studied by solving the one-dimensional Riemann problem for the evolution of an initial current sheet after the onset of magnetic reconnection as well as carrying out two-dimensional MHD simulations. As the emerging magnetic flux reconnects with ambient open magnetic fields in the coronal hole, rotational discontinuities are generated in the region with open field lines. It is also found that in the solar corona with a low plasma beta (β ∼ 0.01), the magnetic energy is converted through magnetic reconnection mostly into the plasma bulk-flow energy. Since more microflares will generate more rotational discontinuities and also supply more energy to the solar wind, it is expected that the number of rotational discontinuities observed in the solar wind would be an increasing function of solar wind speed. The observation rate of rotational discontinuities generated by microflares is estimated to be dN RD/dt ∼- f/63 000 s (f > 1) at 1 AU. The present mechanism favors the generation of rotational discontinuities with a large shock normal angle.

This is a preview of subscription content, access via your institution.

References

  1. Alexander, C. J., Neugebauer, M., Smith, E. J., and Bame, S. J.: 1987, Tech. Note NCAR/TN-306 and Proc. Nat. Conf. for Atmos. Res., Boulder, Colorado, p. 341.

  2. Axford, W. I. and McKenzie, J. F.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 1.

    Google Scholar 

  3. Barnes, A.: 1979, in E. N. Parker, C. F. Kennel, and L. J. Lanzerotti (eds.), Solar System Plasma Phys. 1, North-Holland Co., p. 249.

  4. Biernat, H. K., Heyn, M. F., Rijnbeek, R. P., Semenov, V. S., and Farrugia, C. J.: 1989, J. Geophys. Res. 94, 287.

    Google Scholar 

  5. Biernat, H. K. et al.: 1992, J. Geophys. Res. 92, 3392.

    Google Scholar 

  6. Burlaga, L. F.: 1971, J. Geophys. Res. 76, 4360.

    Google Scholar 

  7. Burlaga, L. F., Lemaire, J. E, and Turner, J. M.: 1977, J. Geophys. Res. 82, 3191.

    Google Scholar 

  8. Cohen, R. H. and Kulsrud, R. R.: 1974, Phys. Fluids 17, 2215.

    Google Scholar 

  9. Dere, K. P.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 11.

    Google Scholar 

  10. Dungey, J. W.: 1961, Phys. Rev. Letters 6, 47.

    Google Scholar 

  11. Goodrich, C. C. and Cargill, P. J.: 1991, Geophys. Res. Letters 18, 65.

    Google Scholar 

  12. Habbal, S. R.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 41.

    Google Scholar 

  13. Hau, L.-N. and Sonnerup, B. U. O.: 1989, J. Geophys. Res. 94, 6539.

    Google Scholar 

  14. Hau, L.-N. and Sonnerup, B. U. O.: 1991, J. Geophys. Res. 96, 15767.

    Google Scholar 

  15. Heyn, M. F., Biernat, H. K., Rijnbeek, P. P., and Semenov, V. S.: 1988, J. Plasma Phys. 40, 235.

    Google Scholar 

  16. Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.

    Google Scholar 

  17. Jeffrey, A. and Taniuti, T.: 1964, Non-Linear Wave Propagation, Academic, Orlando.

    Google Scholar 

  18. Kennel, C. F., Buti, B., Hada, T., and Pellat, R.: 1988, Phys. Fluids 31, 1949.

    Google Scholar 

  19. Kentrowitz, A. R. and Petschek, H. E.: 1966, in W. B. Kunkel (ed.), Plasma Physics in Theory and Application, MacGraw-Hill, New York, p. 148.

    Google Scholar 

  20. Landau, L. D. and Lifshitz, E. M.: 1960, Electrodynamics of Continuous Media, Pergamon Press, London.

    Google Scholar 

  21. LaBelle-Hamer, A., Otto, A., and Lee, L. C.: 1994, Phys. Plasmas 1, 706.

    Google Scholar 

  22. Lee, L. C. and Kan, J. R.: 1982, J. Geophys. Res. 87, 139.

    Google Scholar 

  23. Lee, L. C., Huang, L. and Chao, J. K.: 1989, J. Geophys. Res. 94, 8813.

    Google Scholar 

  24. Lepping, R. P. and Behannon, K. W.: 1980, NASA Tech. Memo. 82036, NASA Goddard Space Flight Center, Greenbelt, Md.

    Google Scholar 

  25. Lepping, R. P. and Behannon, K. W.: 1986, J. Geophys. Res. 91, 8725.

    Google Scholar 

  26. Levy, R. H., Petschek, H. E., and Siscoe, G. L.: 1964, AIAA J. 2, 2065.

    Google Scholar 

  27. Lin, Y. and Lee, L. C.: 1993, J. Geophys. Res. 98, 3919.

    Google Scholar 

  28. Lin, Y. and Lee, L. C.: 1994, Space Sci. Rev. 65, 59.

    Google Scholar 

  29. Lin, Y., Lee, L. C., and Kennel, C. F.: 1992, Geophys. Res. Letters 19, 229.

    Google Scholar 

  30. Lyu, L. H. and Kan, J. R.: 1989, J. Geophys. Res. 94, 6523.

    Google Scholar 

  31. Ma, Z. W., Lee, L. C., and Otto, A.: 1995, J. Geophys. Res. 100, in press.

  32. Mariani, F., Bavassano, B., Villante, U., and Ness, N. F.: 1973, J. Geophys. Res. 78, 9011.

    Google Scholar 

  33. Martin, R. N., Belcher, J. W., and Lazarus, A. J.: 1973, J. Geophys. Res. 78, 3653.

    Google Scholar 

  34. Martin, S. F.: 1988, Solar Phys. 117, 243.

    Google Scholar 

  35. Neubauer, F. M. and Barnstorf, H.: 1981, Rep. MAPE-W-100–81–31, Lindau, Germany, p. 116.

    Google Scholar 

  36. Neugebauer, M.: 1989, Geophys. Res. Letters 16, 1261.

    Google Scholar 

  37. Neugebauer, M.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 69.

    Google Scholar 

  38. Neugebauer, M., Clay, D. R., Goldstein, B. E., Tsurutani, B. T., and Zwickl, R. D.: 1984, J. Geophys. Res. 89, 5393.

    Google Scholar 

  39. Parker, E. N.: 1957, J. Geophys. Res. 62, 509.

    Google Scholar 

  40. Parker, E. N.: 1963, Astrophys. J. Suppl. Ser. 8, 117.

    Google Scholar 

  41. Parker, E. N.: 1991, Astrophys. J. 372, 719.

    Google Scholar 

  42. Petschek, H. E.: 1964, in AAS-NASA Symposium on the Physics of Solar Flares, NASA Spec. Publ. SP-50, 425.

  43. Porter, J. G., Moore, R. L., Reichmann, E. J., Engvold, O., and Harvey, K. L.: 1987, Astrophys. J. 241, 394.

    Google Scholar 

  44. Priest, E. R. and Forbes, T. G.: 1986, J. Geophys. Res. 91, 5579.

    Google Scholar 

  45. Richter, P. and Scholer, M.: 1989, Geophys. Res. Letters 16, 1257.

    Google Scholar 

  46. Sato, T.: 1979, J. Geophys. Res. 84, 7177.

    Google Scholar 

  47. Scholer, M.: 1989, J. Geophys. Res. 94, 15099.

    Google Scholar 

  48. Semenov, V. S., Kubyshkin, I. V., Lebedeva, V. V., Sidneva, M. V., Biernat, H. K., Heyn, M. F., Besser, B. P., and Rijnbeek, R. P.: 1992, J. Geophys. Res. 97, 4251.

    Google Scholar 

  49. Shi, Y. and Lee, L. C.: 1990, Planetary Space. Sci. 38, 437.

    Google Scholar 

  50. Siscoe, G. L.: 1974, in C. T. Russell (ed.), Solar Wind 3 IGPP, UCLA, p. 151.

  51. Smith, E. J.: 1973, J. Geophys. Res. 78, 2054.

    Google Scholar 

  52. Solodyna, C. V., Sari, J. W., and Belcher, J. W.: 1977, J. Geophys. Res. 82, 10.

    Google Scholar 

  53. Sonnerup, B. U. O.: 1970, J. Plasma Phys. 4, 161.

    Google Scholar 

  54. Sonnerup, B. U. O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T.: 1981, J. Geophys. Res. 86, 10049.

    Google Scholar 

  55. Sweet, P. A.: 1958, in B. Lehnert (ed.), Electromagnetic Phenomena in Cosmical Physics, Cambridge University Press, London, p. 123.

    Google Scholar 

  56. Swift, D. W. and Lee, L. C.: 1983, J. Geophys. Res. 88, 111.

    Google Scholar 

  57. Taniuti, T.: 1962, Prog. Theor. Phys. 28, 756.

    Google Scholar 

  58. Turner, J. M.: 1973, J. Geophys. Res. 78, 59.

    Google Scholar 

  59. Turner, J. M. and Siscoe, G. L.: J. Geophys. Res. 76, 1816.

  60. Ugai, M.: 1984, Plasma Phys. Contr. Fusion 26, 1549.

    Google Scholar 

  61. Wang, D. J. and Sonnerup, B. U. O.: 1984, Phys. Fluids 27, 2828.

    Google Scholar 

  62. Withbroe, G. L.: 1988, Astrophys. J. 325, 442.

    Google Scholar 

  63. Wu, C. C.: 1990, J. Geophys. Res. 95, 8149.

    Google Scholar 

  64. Wu, C. C. and Kennel, C. F.: 1992, Phys. Rev. Letters 68, 56.

    Google Scholar 

  65. Yan, M., Lee, L. C., and Priest, E. R.: 1992, J. Geophys. Res. 97, 8277.

    Google Scholar 

  66. Yang, C-K and Sonnerup, B. U. O.: 1977, J. Geophys. Res. 82, 699.

    Google Scholar 

  67. Yeh, T. and Axford, W.: 1970, J. Plasma. Phys. 4, 207.

    Google Scholar 

  68. Zirker, J. B. (ed.): 1977, Coronal Holes and High-Speed Wind Streams, Colorado Associated University Press, Boulder, p. 1.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, L.C., Lin, Y. & Choe, G.S. Generation of rotational discontinuities by magnetic reconnection associated with microflares. Sol Phys 163, 335–359 (1996). https://doi.org/10.1007/BF00148006

Download citation

Keywords

  • Solar Wind
  • Coronal Hole
  • Magnetic Reconnection
  • Solar Wind Speed
  • Bulge Region