Skip to main content
Log in

The Prominence-Corona Transition Region in transverse magnetic fields

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An emission measure analysis is performed for the Prominence-Corona Transition Region (PCTR) under the assumption that the cool matter of quiescent filaments is contained in long, thin magnetic flux loops imbedded in hot coronal cavity gas. Consequently, there is a transition region around each thread.

Comparison of the model and observations implies that the temperature gradient is perpendicular to the magnetic lines of force in the lower part of the PCTR (T < 105 K). It is shown that in this layer the heating given by the divergence of the transverse conduction fails to account for the observed UV and EUV emission by several orders of magnitude. It is, therefore, suggested that the heating of these layers could be due to dissipation of Alfvén waves.

In the high-temperature layers (T ≥ 105 K), where the plasma β ≥ 1, the temperature gradient is governed by radiative cooling balancing conductive heating from the surrounding hot coronal gas. Also in these outer layers the presence of magnetic fields reduces notably the thermal conduction relative to the ideal field-free case. Numerical modelling gives good agreement with observed DEM; the inferred value of the flux carried by Alfvén waves, as well as that of the damping length, greatly support the suggested form of heating. The model assumes that about 1/3 of the volume is occupied by threads and the rest by hot coronal cavity matter.

The brightness of the EUV emission will depend on the angle between the thread structure and the line of sight, which may lead to a difference in brightness from observations at the limb and on the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athay, R. G.: 1982, Astrophys. J. 263, 390.

    Google Scholar 

  • Califano, F., Chiuderi, C., and Einaudi, G.: 1990, Astrophys. J. 365, 757.

    Google Scholar 

  • Cally, P. S.: 1990, Astrophys. J. 355, 693.

    Google Scholar 

  • Chiuderi, C. and Chiuderi Drago, F.: 1991, Solar Phys. 132, 81.

    Google Scholar 

  • Dere, K. P., Bartoe, J.-D. F., and Brueckner, G. E.: 1986, Astrophys. J. 305, 947.

    Google Scholar 

  • Dunn, R. B.: 1960, Ph.D. Thesis, Harvard University, Harvard.

    Google Scholar 

  • Einaudi, G. and Raadu, M. A.: 1987, in J. L. Ballester (ed.), Proc. Workshop on Dynamics and Structure of Solar Prominences, Palma, Mollarco, p. 161.

  • Engvold, O. and Kjeldseth-Moe, O.: 1990, in P. Maltby and E. Leer (eds.), Proceedings of the Mini-Workshop on Physical Processes in the Solar Transitions-Region and Corona, Institute of Theoretical Astrophysics, University Oslo, p. 165.

  • Engvold, O., Kjeldseth-Moe, O., Bartoe, J.-D. F., and Brueckner, G. E.: 1987, Proc. 21st ESLAB Symposium, Bolkesjø, Norway, ESA SP-275, p. 21.

  • Engvold, O., Hansteen, V., Kjeldseth-Moe, O., and Brueckner, G. E.: 1989, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Dynamic of Quiescent Prominences’, Proc. IAU Colloq. 117, 250.

  • Fontenla, J. M. Avrett, E. H., and Loeser, R.: 1990, Astrophys. J. 355, 700.

    Google Scholar 

  • Jensen, E.: 1989, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Dynamics of Quiescent Prominences’, Proc. IAU Colloq. 117, 106.

  • Kim, I. S.: 1989, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Dynamics of Quiescent Prominences’, Proc. IAU Colloq. 117, 49.

  • Kjeldseth-Moe, O., Cook, J. W., and Mango, S. A.: 1979, Solar Phys. 61, 319.

    Google Scholar 

  • Kuin, N. P. M. and Poland, A. I.: 1991, Astrophys. J. 370, 763.

    Google Scholar 

  • Kundu, M. R., Melozzi, M., and Shevgaonkar, R. K.: 1986, Astron. Astrophys. 167, 166.

    Google Scholar 

  • Mariska, J. T.: 1986, Ann. Rev. Astron. Astrophys. 24, 23.

    Google Scholar 

  • Martin, S. F.: 1989, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Dynamics of Quiescent Prominences’, Proc. IAU Colloq. 117, 106.

  • Poland, A. I. and Engvold, O.: 1986, unpublished results from SMM data.

  • Pramesh Rao, A. and Kundu, M. R.: 1977, Solar Phys. 55, 161.

    Google Scholar 

  • Priest, E. R.: 1982, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Raymond, J. C. and Smith, B. W.: 1977, Astrophys. J. Suppl. Ser. 35, 419.

    Google Scholar 

  • Schmahl, E. J. and Orrall, F. Q.: 1986, in A. I. Poland (ed.), Coronal and Prominence Plasmas, NASA Conf. Publ. 2442, p. 127.

  • Schmieder, B., Poland, A., Thompson, B., and Demoulin, P.: 1988, Astron. Astrophys. 197, 281.

    Google Scholar 

  • Vial, J. C.: 1989, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Dynamics of Quiescent Prominences’, Proc. IAU Colloq. 117, 106.

  • Withbroe, G.: 1981, in S. Jordan (ed.), The Sun as a Star, NASA Publ., p. 321.

  • Yi, Z.: 1992 (in preparation).

  • Yi, Z. and Engvold, O.: 1991, Solar Phys. 134, 275.

    Google Scholar 

  • Yi, Z., Engvold, O., and Keil, S. L.: 1991, Solar Phys. 132, 63.

    Google Scholar 

  • Yi, Z., Engvold, O., and Jensen, E.: 1992, Solar Phys. (in preparation).

  • Zirker, J. B. and Koutchmy, S.: 1989, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Dynamics of Quiescent Prominences’, Proc. IAU Colloq. 117, 106.

  • Zirker, J. B. and Koutchmy, S.: 1990, Solar Phys. 127, 109.

    Google Scholar 

  • Zirker, J. B. and Koutchmy, S.: 1991, Solar Phys. 131, 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drago, F.C., Engvold, O. & Jensen, E. The Prominence-Corona Transition Region in transverse magnetic fields. Sol Phys 139, 47–64 (1992). https://doi.org/10.1007/BF00147881

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00147881

Keywords

Navigation