On the space-filling enneahedra

Abstract

A space-filling polyhedron is one whose replications can be packed to fill three-space completely. The space-filling polyhedra of four to eight faces have been previously reported. The search is here extended to the convex space-fillers of nine faces. The number of types is found to be at least 40.

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.

    Goldberg, M.: ‘Three Infinite Families of Tetrahedral Space-Fillers’. J. Comb. Theory 16 (1974), 348–354.

    Google Scholar 

  2. 2.

    Goldberg, M.: ‘The Space-Filling Pentahedra’. J. Comb. Theory 13 (1972), 437–443; 17 (1974), 375–378.

    Google Scholar 

  3. 3.

    Goldberg, M.: ‘Several New Space-Filling Polyhedra’. Geometriae Dedicata 5 (1976), 517–523.

    Google Scholar 

  4. 4.

    Goldberg, M.: ‘On the Space-Filling Hexahedra’. Geometriae Dedicata 6 (1977), 99–108.

    Google Scholar 

  5. 5.

    Goldberg, M.: ‘On the Space-Filling Heptahedra’. Geometriae Dedicata 7 (1978), 175–184.

    Google Scholar 

  6. 6.

    Goldberg, M.: ‘Convex Space-Fillers of More than Twelve Faces’. Geometriae Dedicata 8 (1979), 491–500.

    Google Scholar 

  7. 7.

    Goldberg, M.: ‘Some Overlooked Convex polyhedral Space-Fillers’. Geometriae Dedicata 9 (1980), 375–379.

    Google Scholar 

  8. 8.

    Goldberg, M.: ‘On the Dodecahedral Space-Fillers’. Geometriae Dedicata 10 (1981), 79–89.

    Google Scholar 

  9. 9.

    Goldberg, M.: ‘On the Space-Filling Octahedra’. Geometriae Dedicata 10 (1981) 323–335.

    Google Scholar 

  10. 10.

    Koch, Elke: ‘Wirkungsbereichspolyeder und Wirkungsbereichsteilungen zu kubschen Gitterkomplexen’. Dissertation, Philipps-Universität Marburg/Lahn, 1972.

    Google Scholar 

  11. 11.

    Stein, S. K.: ‘A Symmetric Star Body that Tiles But Not as a Lattice’. Proc. Amer. Math. Soc. 36 (1972), 543–548.

    Google Scholar 

  12. 12.

    Federico, P. J.: ‘The Number of Polyhedra’. Philips Res. Reports 30 (1975), 220–231.

    Google Scholar 

  13. 13.

    Brückner, Max: Vielecke und Vielflache. B. G. Teubner, Leipzig, 1900, Table III

    Google Scholar 

  14. 14.

    Grace, D. W.: ‘Computer Search for Non-isomorphic Convex Polyhedra’. Tech. Report CS 15, Computer Science Dept., Stanford University (1965).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, M. On the space-filling enneahedra. Geom Dedicata 12, 297–306 (1982). https://doi.org/10.1007/BF00147314

Download citation