Advertisement

Geometriae Dedicata

, Volume 12, Issue 3, pp 297–306 | Cite as

On the space-filling enneahedra

  • Michael Goldberg
Article
  • 28 Downloads

Abstract

A space-filling polyhedron is one whose replications can be packed to fill three-space completely. The space-filling polyhedra of four to eight faces have been previously reported. The search is here extended to the convex space-fillers of nine faces. The number of types is found to be at least 40.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Goldberg, M.: ‘Three Infinite Families of Tetrahedral Space-Fillers’. J. Comb. Theory 16 (1974), 348–354.Google Scholar
  2. 2.
    Goldberg, M.: ‘The Space-Filling Pentahedra’. J. Comb. Theory 13 (1972), 437–443; 17 (1974), 375–378.Google Scholar
  3. 3.
    Goldberg, M.: ‘Several New Space-Filling Polyhedra’. Geometriae Dedicata 5 (1976), 517–523.Google Scholar
  4. 4.
    Goldberg, M.: ‘On the Space-Filling Hexahedra’. Geometriae Dedicata 6 (1977), 99–108.Google Scholar
  5. 5.
    Goldberg, M.: ‘On the Space-Filling Heptahedra’. Geometriae Dedicata 7 (1978), 175–184.Google Scholar
  6. 6.
    Goldberg, M.: ‘Convex Space-Fillers of More than Twelve Faces’. Geometriae Dedicata 8 (1979), 491–500.Google Scholar
  7. 7.
    Goldberg, M.: ‘Some Overlooked Convex polyhedral Space-Fillers’. Geometriae Dedicata 9 (1980), 375–379.Google Scholar
  8. 8.
    Goldberg, M.: ‘On the Dodecahedral Space-Fillers’. Geometriae Dedicata 10 (1981), 79–89.Google Scholar
  9. 9.
    Goldberg, M.: ‘On the Space-Filling Octahedra’. Geometriae Dedicata 10 (1981) 323–335.Google Scholar
  10. 10.
    Koch, Elke: ‘Wirkungsbereichspolyeder und Wirkungsbereichsteilungen zu kubschen Gitterkomplexen’. Dissertation, Philipps-Universität Marburg/Lahn, 1972.Google Scholar
  11. 11.
    Stein, S. K.: ‘A Symmetric Star Body that Tiles But Not as a Lattice’. Proc. Amer. Math. Soc. 36 (1972), 543–548.Google Scholar
  12. 12.
    Federico, P. J.: ‘The Number of Polyhedra’. Philips Res. Reports 30 (1975), 220–231.Google Scholar
  13. 13.
    Brückner, Max: Vielecke und Vielflache. B. G. Teubner, Leipzig, 1900, Table IIIGoogle Scholar
  14. 14.
    Grace, D. W.: ‘Computer Search for Non-isomorphic Convex Polyhedra’. Tech. Report CS 15, Computer Science Dept., Stanford University (1965).Google Scholar

Copyright information

© D. Reidel Publishing Co 1982

Authors and Affiliations

  • Michael Goldberg
    • 1
  1. 1.WashingtonU.S.A.

Personalised recommendations