Solar Physics

, Volume 5, Issue 1, pp 111–117 | Cite as

A model for Type-IV emission in the solar burst of June 9, 1959 at decametric wavelengths

  • James W. Warwick


A major radio burst at decametric frequencies at 1638 UT on June 9, 1959 is apparently a Type-IV continuum burst of the kind that drifts from high to low frequencies. We present observations of flux variations and East-West positions of the emission at both 18 and 38 MHz. The burst moves outward at a speed of about 4700 km·sec−1 at each frequency to a height of about 3 R from the sun's center and then returns to the sun. This behavior is not simultaneous at 18 MHz and 38 MHz; the outward moving phase of 18 MHz emission occurs during the return phase of 38 MHz.

We suspect that a solitary Alfvén wave or shock traverses the outer corona at the time of this burst. Relativistic electrons created low in the solar atmosphere travel freely along radial lines of force up to the coronal-streamer heights of the Type-IV burst. Upon encountering the shock, the electrons emit locally intense synchrotron emission, and pass through the shock on out into interplanetary space.

This model appears to be consistent with other shock front phenomena in interplanetary space and the corona.

Finally, the Razin effect (Boischot and Clavelier, 1967) suggests that low-frequency cut-offs in Type-IV bursts ought to be quite constant in frequency, and not higher than between 0.4 to 4 MHz.


Relativistic Electron Solar Atmosphere Radio Burst Flux Variation Interplanetary Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boischot, A. and Clavelier, B.: 1967, Astrophys. Letters 1, 7.ADSGoogle Scholar
  2. Boischot, A., Clavelier, B., Mangeney, A., and Lacombe, C.: 1967, Compt. Rend. 265, 1151.Google Scholar
  3. Coates, R. J.: 1966, Proc. I.E.E.E. 54, 471.Google Scholar
  4. Covington, A. E. and Harvey, G. A.: 1961, Phys. Rev. Letters 6, 51.ADSCrossRefGoogle Scholar
  5. Neugebauer, M. and Snyder, C. W.: 1967, J. Geophys. Res. 72, 1823.ADSCrossRefGoogle Scholar
  6. Newkirk, G. A.: 1967, Ann. Rev. Astron. Astrophys. 5, 213.ADSCrossRefGoogle Scholar
  7. Newkirk, G. A., Curtis, G. W., Watson, D. K., Manning, R., and Shelby, J.: 1959, Nature 184, 1308.ADSCrossRefGoogle Scholar
  8. Parker, E. N.: 1965, Phys. Rev. Letters 14, 55.ADSCrossRefGoogle Scholar
  9. Rao, U. R., McCracken, K. G., and Bukata, R. P.: 1967, J. Geophys. Res. 72, 4325.ADSCrossRefGoogle Scholar
  10. Warwick, C. S.: 1962, J. Geophys. Res. 67, 1333.ADSCrossRefGoogle Scholar
  11. Warwick, J. W.: 1965, ‘Sweep Frequency Measurements of Solar Bursts’ in Solar System Radio Astronomy (ed. by J. Aarons), Plenum Press, New York, Chapter 8.Google Scholar
  12. Weddell, J. B.: 1965, Planetary Space Sci. 13, 789.ADSCrossRefGoogle Scholar
  13. Weiss, A. A.: 1963, Australian J. Phys. 16, 526.ADSCrossRefGoogle Scholar
  14. Wild, J. P.: 1965, Trans. I.A.U. XIIA, 639.Google Scholar
  15. Young, C. W., Spencer, C. E., Moreton, G. E., and Roberts, J. A.: 1961, Astrophys. J. 133, 243.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1968

Authors and Affiliations

  • James W. Warwick
    • 1
  1. 1.Dept. of Astro-GeophysicsUniversity of ColoradoBoulderUSA

Personalised recommendations