Skip to main content
Log in

Magnetic reconnection and coronal transients

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Every two-ribbon flare observed during the Skylab period produced an observable coronal transient, provided the flare occurred close enough to the limb. The model presented here treats these two events as a combined process. Transients that occur without flares are believed to involve magnetic fields that are too weak to produce significant chromospheric emission. Adopting the hypothesis that the rising flare loop systems observed during two-ribbon flares are exhibiting magnetic reconnection, a model of a coronal transient is proposed which incorporates this reconnection process as the driving force. When two oppositely directed field lines reconnect a lower loop is created rooted to the solar surface (the flare loop) and an upper disconnected loop is produced which is free to rise. The magnetic flux of these upper loops is proposed as the driver for the transient. The force is produced by the increase in magnetic pressure under the filament and transient.

A quantitative model is developed which treats the transient configuration in terms of four distinct parts- the transient itself with its magnetic field and material, the region just below the transient but above the filament, the filament with its magnetic field, and the reconnected flux beneath the filament. Two cases are considered - one in which all the prominence material rises with the transient and one in which the material is allowed to fall out of the transient. The rate of rise of the neutral line during the reconnection process is taken from the observations of the rising X-ray flare loop system during the 29 July, 1973 flare. The MHD equations for the system are reduced to four non-linear ordinary coupled differential equations which are solved using parameters believed to be realistic for solar conditions. The calculated velocity profiles, widths, etc., agree quite well with the observed properties of coronal transients as seen in white light. Since major flares are usually associated with a filament eruption about 10–15 min before the flare and since this model associates the transient with the filament eruption, we suspect that the transient is actually initiated some time before the actual flare itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzer, U.: 1978, Solar Phys. 57, 111.

    Google Scholar 

  • Bame, S. J., Ashbridge, J. R., Feldman, W. C., Fenimore, E., and Gosling, J. T.: 1979, Solar Phys. 62, 179.

    Google Scholar 

  • Bame, S. J., Ashbridge, J. R., Feldman, W. C., Gosling, J. T., and Zwickl, R. D.: 1981, Geophys. Res. Letters 8, 173.

    Google Scholar 

  • Bruzek, A.: 1964, AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p. 301.

  • Burlaga, L. F. and Klein, L.: 1980, NASA Tech. Memorandum 80668.

  • Charmichael, H.: 1964, AAS NASA Symposium on the Physics of Solar Flares, NASA SP-50, p. 451.

  • Correll, M. and Roberts, W. O.: 1958, Astrophys. J. 127, 726.

    Google Scholar 

  • Dryer, M., Wu, S. T., Steinolfson, R. S., and Wilson, R. M.: 1978, Astrophys. J. 227, 1059.

    Google Scholar 

  • Dulk, G. A., Smerd, S. F., MacQueen, R. M., Gosling, J. T., Magun, A., Stewart, R. T., Sheridan, K. V., Robinson, R. D., and Jacques, S.: 1976, Solar Phys. 49, 369.

    Google Scholar 

  • Eddy, J. A.: 1974, Astron. Astrophys. 34, 235.

    Google Scholar 

  • Fisher, R. and Poland, A. I.: 1981, Astrophys. J. 246, 1004.

    Google Scholar 

  • Fisher, R., Garcia, C. J., and Seagraves, P.: 1981, Astrophys. J. Letters 246, L161.

    Google Scholar 

  • Gergely, T. E., Kundu, M. R., Munro, R. H., and Poland, A. I.: 1979, Astrophys. J. 230, 575.

    Google Scholar 

  • Gosling, J. T.: 1975, Rev. Geophys. Space Res. 13, 1053.

    Google Scholar 

  • Gosling, J. T. and Roelof, E.: 1974, Solar Phys. 39, 404.

    Google Scholar 

  • Gosling, J. T., Pizzo, V., and Bame, S. J.: 1973, Geophys. Res. 78, 2001.

    Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I., and Ross, C. L.: 1976, Solar Phys. 48, 389.

    Google Scholar 

  • Hildner, E.: 1977, in M. S. Shea et al. (eds.), Study of Traveling Interplanetary Phenomena, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Hirayama, T.: 1974, Solar Phys. 34, 323.

    Google Scholar 

  • House, L. L., Wagner, W. J., Hildner, E., Schmidt, H. U., and Sawyer, C.: 1980, Astrophys. J. Letters 244, L117.

    Google Scholar 

  • Jockers, K.: 1976, Solar Phys. 50, 405.

    Google Scholar 

  • Kopp, R. A. and Pneuman, G. W.: 1976, Solar Phys. 50, 85.

    Google Scholar 

  • MacCombie, W. J. and Rust, D. M.: 1979, Solar Phys. 61, 69.

    Google Scholar 

  • Martin, S. F.: 1979a, Solar Phys. 64, 165.

    Google Scholar 

  • Martin, S. F.: 1979b, Report II, Final Report, Contract NAS8-32855.

  • Michels, D. J., Howard, R. A., Koomen, M. H., Sheeley, N. R. Jr., and Rompolt, B.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), ‘Solar and Interplanetary Dynamics’, IAU Symp. 91, 387.

  • Montgomery, M. D., Ashbridge, J. R., Bame, S. J., and Feldman, W. C.: 1974, Geophys. Res. 79, 3103.

    Google Scholar 

  • Moore, R., McKenzie, D. L., Švestka, Z., Widing, K. G., Antiochos, S. K., Dere, K. P., Dodson-Prince, H. W., Hiei, E., Krall, K. R., Krieger, A. S., Mason, H. E., Pertrasso, R. D., Pneuman, G. W., Silk, J. K., Vorpahl, J. A., and Whitbroe, G. L.: 1980, in P.A. Sturrock (ed.), Solar Flares, Colorado Associated University Press, p. 341.

  • Mouschovias, T. C. and Poland, A. I.: 1978, Astrophys. J. 220, 275.

    Google Scholar 

  • Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., and Ross, C. L.: 1979, Solar Phys. 61, 201.

    Google Scholar 

  • Nakagawa, Y., Wu, S. T., and Tandberg-Hanssen, E.: 1975, Astrophys. J. 41, 387.

    Google Scholar 

  • Nakagawa, Y., Wu, S. T., and Han, S. M.: 1978, Astrophys. J. 219, 314.

    Google Scholar 

  • Palmer, I. D., Allum, F. R., and Singer, S.: 1978, J. Geophys. Res. 83, 75.

    Google Scholar 

  • Pneuman, G. W.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), ‘Solar and Interplanetary Dynamics’, IAU Symp. 91, 317.

  • Pneuman, G. W.: 1980, Solar Phys. 65, 369.

    Google Scholar 

  • Pneuman, G. W.: 1981, in E. Priest (ed.), Solar Flare Magnetohydrodynamics, Gordon and Breach Publ. Co., London, New York, Paris.

    Google Scholar 

  • Poland, A. I., Howard, R. A., Kooman, M. J., Michels, D. J., and Sheeley, N. R. Jr.: 1982, Solar Phys. (in press).

  • Roy, J.: 1972, Solar Phys. 26, 418.

    Google Scholar 

  • Rust, D. M. and Bar, V.: 1973, Solar Phys. 33, 445.

    Google Scholar 

  • Rust, D. M. and Roy, J.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’, IAU Symp. 43, 569.

  • Rust, D. M. and Webb, D. F.: 1977, Solar Phys. 54, 403.

    Google Scholar 

  • Rust, D. M., Hildner, E., Dryer, M., Hansen, R. T., McClymont, A. N., McKenna-Lawlor, S. M. P., McLean, D. J., Schmahl, E. J., Steinolfson, R. S., Tandberg-Hanssen, E., Tousey, R., Webb, D. F., and Wu, S. T.: 1980, in P. A. Sturrock (ed.), Solar Flares, Colorado Associated University Press, p. 273.

  • Schmidt, H. U.: 1969, COSPAR Symp. on Solar Flares and Space Reserch, North-Holland Publ. Co.

  • Sheeley, N. R. Jr., Howard, R. A., Koomen, M. J., and Michels, D. J.: 1980a, in M. Dryer and E. Tandberg-Hanssen (eds.), ‘Solar and Interplanetary Dynamics’, IAU Symp. 91, 55.

  • Sheeley, N. R., Jr., Michels, D. J., Howard, R. A., and Koomen, M. J.: 1980b, Astrophys. J. Letters 237, L99.

    Google Scholar 

  • Sheeley, N. R., Jr., Howard, R. A., Koomen, M. J., Michels, D. J., and Poland, A. I.: 1980c, Astrophys. J. Letters 238, L161.

    Google Scholar 

  • Sturrock, P. A.: 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 471.

  • Sturrock, P. A.: 1972, Solar Phys. 23, 438.

    Google Scholar 

  • Tousey, R. and Koomen, M. J.: 1972, Flare Produced Shock Waves in the Coronal and Interplanetaryn Space, NCAR Rept., Boulder, Colo., U.S.A.

    Google Scholar 

  • Wagner, W. J., Hildner, E., House, L. L., Dulk, G. A., Sheridan, K. V., and Sawyer, C.: 1981, Astrophys. J. Letters 244, L123.

    Google Scholar 

  • Webb, D. F., McIntosh, P. S., Nolte, J. T., and Soldyna, C. V.: 1978, Solar Phys. 58, 389.

    Google Scholar 

  • Wu, S. T., Dryer, M., McIntosh, P. S., and Reichmann, E. J.: 1975, Solar Phys. 44, 117.

    Google Scholar 

  • Wu, S. T., Dryer, M., Nakagawa, Y., and Han, S. M.: 1978, Astrphys. J. 219, 324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anzer, U., Pneuman, G.W. Magnetic reconnection and coronal transients. Sol Phys 79, 129–147 (1982). https://doi.org/10.1007/BF00146978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146978

Keywords

Navigation