Skip to main content
Log in

Numerical simulations of driven MHD waves in coronal loops

  • Published:
Solar Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The solar corona, modeled by a low-β, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x −1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, A. and Hollweg, J. V.: 1974, J. Geophys. Res. 79, 2302.

    Google Scholar 

  • Boris, J. P. and Book, D. L.: 1973, J. Comp. Phys. 11, 38.

    Google Scholar 

  • Cadez, V. M. and Ballester, J. L.: 1996, Astron. Astrophys., in press.

  • Choe, G. S. and Lee, L. C.: 1992, Solar Phys. 138, 291.

    Google Scholar 

  • Choudhuri, A. R., Auffret, H., and Priest, E. R.: 1993, Solar Phys. 143, 49.

    Google Scholar 

  • Choudhuri, A. R., Dikpati, M., and Banerjee, D.: 1993, Astrophys. J. 413, 811.

    Google Scholar 

  • De Bruyne, P. and Hood, A. W.: 1993, Solar Phys. 147, 97.

    Google Scholar 

  • De Vore, C. R.: 1991, J. Comp. Phys. 92, 142.

    Google Scholar 

  • De Vore, C. R.: 1994, Flux-Corrected Transport Modules for Solving Multidimensional Compressible Magnetohydrodynamics Problems on Parallel Computers, Naval Research Laboratory Memorandum Report, in preparation.

  • Erdélyi, R. and Goossens, M.: 1994, Astrophys. Space Sci. 213, 173.

    Google Scholar 

  • Goedbloed, J. P.: 1983, Lecture Notes on Ideal Magnetohydrodynamics, Rijnhuizen Report 83–145, Niewegein, The Netherlands.

    Google Scholar 

  • Goossens, M.: 1991, in E. R. Priest and A. W. Hood (eds.), Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge, p. 137.

    Google Scholar 

  • Goossens, M., Ruderman, M., and Hollweg, J. V.: 1995, Solar Phys. 157, 75.

    Google Scholar 

  • Gordon, B. E. and Hollweg, J. V.: 1983, Astrophys. J. 266, 373.

    Google Scholar 

  • Grossman, W. and Smith, R. A.: 1988, Astrophys J. 332, 476.

    Google Scholar 

  • Hollweg, J. V.: 1981, Solar Phys. 70, 25.

    Google Scholar 

  • Hollweg, J. V.: 1990, Comp. Phys. Rep. 12, 205.

    Google Scholar 

  • Hollweg, J. V.: 1992, Astrophys. J. 389, 731.

    Google Scholar 

  • Jordan, C.: 1991, in P. Ulmschneider, E. R. Priest, and R. Rosner (eds.), Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Berlin, p. 300.

    Google Scholar 

  • Karpen, J. T., Antiochos, S. K., and DeVore: 1991, Astrophys. J. 382, 327.

    Google Scholar 

  • Murawski, K.: 1992, Solar Phys. 130, 279.

    Google Scholar 

  • Murawski, K. and Goossens, M.: 1994a, Astron. Astrophys. 286, 952.

    Google Scholar 

  • Murawski, K. and Goossens, M.: 1994b, Astron. Astrophys. 286, 943.

    Google Scholar 

  • Murawski, K. and Roberts, B.: 1993, Solar Phys. 145, 65.

    Google Scholar 

  • Parhi, S. and Lakhina, G. S.: 1994, Earth, Moon and Planets 64, 107.

    Google Scholar 

  • Poedts, S. and Kerner, W.: 1992, J. Plasma Phys. 47, 139.

    Google Scholar 

  • Poedts, S., Belien, A. J. C., and Goedbloed, J. P.: 1994, Solar Phys. 151, 271.

    Google Scholar 

  • Poedts, S., Goossens, M., and Kerner, W.: 1989, Solar Phys. 123, 83.

    Google Scholar 

  • Poedts, S., Goossens, M., and Kerner, W.: 1990a, Comp. Phys. Commun. 59, 75.

    Google Scholar 

  • Poedts, S., Goossens, M., and Kerner, W.: 1990b, Comp. Phys. Commun. 59, 95.

    Google Scholar 

  • Priest, E. R. (ed.): 1981, Solar Flare Magnetohydrodynamics, Gordon and Breach Science Publishers, New York.

    Google Scholar 

  • Rankin, R., Samson, J. C., and Frycz, P.: 1993, J. Geophys. Res. 98, 21341.

    Google Scholar 

  • Rickard, G. J. and Priest, E. R.: 1994, Solar Phys. 151, 107.

    Google Scholar 

  • Steinolfson, R. S.: 1991, Astrophys. J. 382, 677.

    Google Scholar 

  • Steinolfson, R. S. and Davila, J. M.: 1993, Astrophys. J. 415, 354.

    Google Scholar 

  • Wei, C. Q., Samson, J. C., Rankin, R., and Frycz, P.: 1994, J. Geophys. Res. 99, 11265.

    Google Scholar 

  • Zalesak, S. T.: 1979, J. Comp. Phys. 31, 335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parhi, S., De Bruyne, P., Murawski, K. et al. Numerical simulations of driven MHD waves in coronal loops. Sol Phys 167, 181–202 (1996). https://doi.org/10.1007/BF00146336

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146336

Keywords

Navigation