Skip to main content
Log in

The relevance of the ballooning approximation for magnetic, thermal, and coalesced magnetothermal instabilities

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Approximate solutions of the linearized non-adiabatic MHD equations, obtained using the ballooning method, are compared with ‘exact’ numerical solutions of the full equations (including the effects of optically thin plasma radiation). It is shown that the standard ballooning method, developed within the framework of ideal linear MHD, can be generalized to non-ideal linear MHD. The localized (ballooning) spectrum has to be used with caution, but can give valuable (though limited) information on non-ideal stability.

The numerical analysis also confirms and quantifies the interesting connection between magnetic and thermal instabilities. The existence of such a coupling is inherent in many qualitative discussions of magnetic disruptions. Finally, the hitherto unrecognized role of the thermal continuum in the unstable part of the ‘magnetothermal’ spectrum is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, C. M. and Orszag, S. A.: 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York.

    Google Scholar 

  • Bogaert, E. and Goossens, M.: 1991, Solar Phys. 132, 109.

    Google Scholar 

  • Braginskii, S. I.: 1965, Rev. Plasma Phys. 1, 205.

    Google Scholar 

  • Connor, J. W., Hastie, R. J., and Taylor, J. B.: 1979, Proc. Roy. Soc. London A365, 1.

    Google Scholar 

  • Cargill, P. J. and Hood, A. W.: 1992, Solar Phys. in preparation.

  • Dewar, R. L. and Glasser, A. H.: 1983, Phys. Fluids 26, 3038.

    Google Scholar 

  • Drake, J. F.: 1987, Phys. Fluids 30, 2429.

    Google Scholar 

  • Heading, J.: 1962, An Introduction to Phase-Integral Methods, Methuen, London.

    Google Scholar 

  • Hood, A. W.: 1986, Solar Phys. 103, 329.

    Google Scholar 

  • Hood, A. W., Van der Linden, R., and Goossens, M.: 1989, Solar Phys. 120, 261.

    Google Scholar 

  • Hood, A. W., Cargill, P. J., Van der Linden, R. A. M., and Goossens, M.: 1992, in preparation.

  • Kerner, W., Lerbinger, K., Gruber, R., and Tsunematsu, T.: 1985, Comp. Phys. Comm. 36, 225.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Google Scholar 

  • Van der Linden, R. A. M. and Goossens, M.: 1991, Solar Phys. 134, 247.

    Google Scholar 

  • Van der Linden, R. A. M., Goossens, M., and Goedbloed, J. P.: 1991, Phys. Fluids B3, 866.

    Google Scholar 

  • Van der Linden, R., Goossens, M., and Hood, A. W.: 1988, Solar Phys. 115, 235.

    Google Scholar 

  • Velli, M. and Hood, A. W.: 1986, Solar Phys. 106, 353.

    Google Scholar 

  • Velli, M. and Hood, A. W.: 1987, Solar Phys. 109, 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research Assistant of the National Fund for Scientific Research, Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Linden, R.A.M., Goossens, M. & Hood, A.W. The relevance of the ballooning approximation for magnetic, thermal, and coalesced magnetothermal instabilities. Sol Phys 140, 317–342 (1992). https://doi.org/10.1007/BF00146316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146316

Keywords

Navigation