Skip to main content
Log in

Numerical simulation of mass injection for the formation of prominence magnetic field configurations

I. Asymmetric injection

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have studied chromospheric mass injection into an overlying coronal dipole magnetic field using a 2-D ideal magnetohydrodynamic (MHD) numerical model. The results indicate that such injection can produce magnetic field deformation conducive to active region prominences - namely, Kippenhahn-Schlüter (K-S) type configurations for stable support of injected plasma. We show the optimum conditions for such dynamical formation of K-S-type field configurations.

Observations show that an active region prominence formation is preceded by the accumulation of absorptive strands above a neutral line. We hypothesize that an absorptive strand is formed by a chromospheric asymmetric mass injection into the overlying coronal magnetic field and that a necessary condition for the accumulation of the strands is that the mass injection forms a K-S-type field configuration. The results of our numerical simulation of the injection dynamics support our hypothesis. To form a K-S-type magnetic field configuration, we find that a narrow range of injection density, velocity, and magnetic field strength must be used; spicule-like, asymmetric mass injection seems favorable.

The limited parameter range that exists for the formation of K-S-type magnetic field configurations in asymmetric injections may explain why active region prominences do not form everywhere on every neutral line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, C.-H., Canfield, R. C., Fisher, G. H., and McClymont, A. N.: 1983, Astrophys. J. 267, 421.

    Google Scholar 

  • An, C.-H., Bao, J. J., and Wu, S. T.: 1986, in Proceedings of the Coronal and Prominence Plasmas Workshop, NASA Publication 2442, p. 51.

  • Hu, Y. Q. and Wu, S. T.: 1984, J. Compt. Phys. 55, 33.

    Google Scholar 

  • Kippenhahn, R. and Schlüter, A.: 1957, Z. Astrophys. 43, 36.

    Google Scholar 

  • Leroy, J. L.: 1978, Astron. Astrophys. 64, 247.

    Google Scholar 

  • Livi, S. H. B., Wang, J., and Martin, S. F.: 1985, Australian J. Phys. 38, 855.

    Google Scholar 

  • Martin, S.: 1973, Solar Phys. 31, 3.

    Google Scholar 

  • Martin, S.: 1986, in Proceedings of the Coronal and Prominence Plasma Workshop, NASA Publication 2442, p. 73.

  • Martin, S., Livi, S. H. B., and Wang, J.: 1985, Australian J. Phys. 38, 929.

    Google Scholar 

  • Pikel'ner, S. B.: 1969, Soviet Astron.-AJ 13, 259.

    Google Scholar 

  • Rompolt, B. and Bogdan, T.: 1986, in Proceedings of the Coronal and Prominence Plasma Workshop, NASA Publication 2442, p. 81.

  • Simon, G., Schmieder, B., Demoulin, P., Malherbe, J. M., and Poland, A. I.: 1986, in Proceedings of the Coronal and Prominence Plasma Workshop, NASA Publication 2442, p. 177.

  • Smith, E. V. P.: 1968, Nobel Symp. 9, 137.

    Google Scholar 

  • Tandberg-Hansen, E.: 1974, Solar Prominences, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Wu, S. T., Hu, Y. Q., Nakagawa, Y., and Tandberg-Hanssen, E.: 1983, Astrophys. J. 266, 866.

    Google Scholar 

  • Wu, S. T., Hu, Y. Q., Nakagawa, Y., and Tandberg-Hanssen, E.: 1986, Astrophys. J. 306, 751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, CH., Bao, J.J. & Wu, S.T. Numerical simulation of mass injection for the formation of prominence magnetic field configurations. Sol Phys 115, 81–92 (1988). https://doi.org/10.1007/BF00146231

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146231

Keywords

Navigation