Skip to main content
Log in

A comparative view of Rickettsia tsutsugamushi and the other groups of rickettsiae

  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Recent researches on the rickettsial group microorganisms are summarized in their comparative aspects of morphology, cultivation and multiplication, susceptibility to chemotherapeutics, chemical structure of envelopes, nucleic acid, protein constitution, and gene structures. From this overview, Rickettsia tsutsugamushi seems to have different properties from the others and should be reclassified into a new genus, and a new species name as Orientia tsutsugamushi is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AkporiayeE.RowattJ.AragonA. and BacaO. (1983). Lysosomal response of murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect. Immun., 40: 1155–1162.

    Google Scholar 

  2. AllisonA. and PerkinsH. (1960). Presence of cell walls like those of bacteria in Rickettsiae. Nature, 188: 796–798.

    Google Scholar 

  3. Amano K. Personal communication.

  4. AmanoK.TamauraA.OhashiN.UrakamiH.KayaS. and FukushiK. (1987). Deficiency of peptidoglycan and lipopolysaccharide components in Rickettsia tsutsugamushi. Infect. Immun., 55: 2290–2292.

    Google Scholar 

  5. AmanoK. and WilliamsJ. (1984). Sensitivity of Coxiella burnetii peptidoglycan to lysozyme hydrolysis and correlation of sacculus rigidity with peptidoglycan-associated proteins. J. Bacteriol., 160: 989–993.

    Google Scholar 

  6. AmanoK. and WilliamsJ. (1984). Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J. Bacteriol., 160: 994–1002.

    Google Scholar 

  7. AmanoK.WilliamsJ.McCaulT. and PeacockM. (1984). Biochemical and immunological properties of Coxiella burnetii cell wall and peptidoglycan protein complex fractions. J. Bacteriol., 160: 982–988.

    Google Scholar 

  8. AmanoK.WilliamsJ.MisslerS. and ReinholdV. (1987). Structure and biological relationships of Coxiella burnetii lipopolysaccharides. J. Biol. Chem., 262: 4740–4747.

    Google Scholar 

  9. AnackerR.ListR.MannR. and WiedbrukD. (1986). Antigenic heterogeneity in high- and low-virulence strains of Rickettsia rickettsii revealed by monoclonal antibodies. Infect. Immun., 51: 653–660.

    Google Scholar 

  10. AnackerR.McCaulT.BurgdorferW. and GerloffR. (1980). Properties of selected rickettsiae of the spotted fever group. Infect. Immun., 27: 468–474.

    Google Scholar 

  11. AnackerR.McDonaldG.ListR. and MannR. (1987). Neutralizing activity of monoclonal antibodies to heat-sensitive and heat-resistant epitopes of Rickettsia rickettsii surface proteins. Infect. Immun., 55: 825–827.

    Google Scholar 

  12. AnackerR.PhilipR.WilliamsJ.ListR. and MannR. (1984). Biochemical and immunochemical analysis of Rickettsia rickettsii strains of various degrees of virulence. Infect. Immun., 44: 559–564.

    Google Scholar 

  13. AnackerR.PickensE. and LackmanD. (1967). Details of the ultrastructure of Rickettsia prowazekii grown in the chick yolk sac. J. Bacteriol., 94: 260–262.

    Google Scholar 

  14. AndersonB.BaumstarkB. and BelliniW. (1988). Expression of the gene encoding the 17-kilodalton antigen from Rickettsia rickettsii: transcription and posttranslational modification. J. Bacteriol., 170: 4493–4500.

    Google Scholar 

  15. AndersonB.RegneryR.CarlonG.TzianabosT.McDadeJ.FuZ. and BelliniW. (1987). Sequence analysis of the 17-kilodalton antigen gene from Rickettsia rickettsii. J. Bacteriol., 169: 2385–2390.

    Google Scholar 

  16. AndersonB. and TzianabosT. (1989). Comparative sequence analysis of a genus-common rickettsial antigen gene, J. Bacteriol., 171: 5199–5201.

    Google Scholar 

  17. Balayeva N. Froiova O. Genig V. and Nikoiskaya V. (1985). Some biological properties of antibiotic-resistant mutants of Rickettsia prowazekii strain E induced by nitrosoguanidine. In ≪Rickettsiae and Rickettsial Diseases≫ ed. by Kaźar J. pp.85–91. Slovak Academy of Sciences, Bratislava.

  18. BlondeauJ.WilliamsJ. and MarrieT. (1990). The immune response to phase I and phase II Coxiella burnetii antigens as measured by western immunoblotting. Ann. N. Y. Acad. Sci., 590: 187–202.

    Google Scholar 

  19. ChingW.DaschG.CarlM. and DobsonM. (1990). Structural analysis of the 120-KDa serotype protein antigens of typhus group rickettsiae. Ann. N. Y. Acad. Sci., 590: 334–351.

    Google Scholar 

  20. DaschG.BuransJ.DobsonM.JaffeR. and SewellW. (1985). Distinctive properties of components of the cell envelopes of typhus group rickettsiae. In ≪Rickettsiae and Rickettsial Diseases≫ ed. by Kazár J. pp.54–61. Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  21. EmrS.HedgpethJ.ClémentJ.SilhavyJ. and HofnungM. (1980). Sequence analysis of mutations that prevent export of λ receptor, an Escherichia coli outer membrane protein. Nature, 285: 82–85.

    Google Scholar 

  22. EwingE.TakeuchiA.ShiraiA. and OstermanJ. (1978). Experimental infection of mouse peritoneal mesothelium with scrub typhus rickettsiae: an ultrastructural study. Infect. Immun., 19: 1068–1075.

    Google Scholar 

  23. FengH.WalkerD. and WangJ. (1987). Analysis of T-cell-dependent antigens of Rickettsia conorii with monoclonal antibodies. Infect. Immun., 55: 7–15.

    Google Scholar 

  24. GilmoreR.JosteN. and McDonaldG. (1989). Cloning, expression and sequence analysis of the gene the l20kD surface exposed protein of Rickettsia rickettsii. Mol. Microbiol., 3: 1579–1586.

    Google Scholar 

  25. GroarkeJ.MahoneyW.HopeJ.FurlongC.RobbF.ZalkinH. and HermodsonM. (1983). The amino acid sequence of D-ribose-binding protein from Escherichia coli K12. J. Biol. Chem., 258: 12952–12956.

    Google Scholar 

  26. HackstadtT.PeacockM.HitchcockP. and ColeR. (1985). Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect. Immun., 48: 359–365.

    Google Scholar 

  27. HansonB. (1985). Identification and partial characterization of Rickettsia tsutsugamushi major protein immunogens. Infect. Immun., 50: 603–609.

    Google Scholar 

  28. HayesS. and BurgdorferW. (1979). Ultrastructure of Rickettsia rhipicephali, a new member of the spotted fever group rickettsiae in tissues of the host vector Rhipicephalus sanguineus. J. Bacteriol., 137: 605–613.

    Google Scholar 

  29. HayesS. and BurgdorferW. (1982). Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis. Infect. Immun., 37: 779–785.

    Google Scholar 

  30. HooverT. and WilliamsJ. (1990). Characterization of Coxiella burneti pyrB. Ann. N. Y. Acad. Sci., 590: 485–490.

    Google Scholar 

  31. ItoS.VinsonJ. and McGuireT. (1975). Murine typhus rickettsiae in the oriental rat flea. Ann. N. Y. Acad. Sci., 266: 35–60.

    Google Scholar 

  32. ItoS.VinsonJ. and WhitescarverJ. (1978). Ultrastructural observations of Rickettsia typhi in human body louse. In ≪Rickettsiae and Rickettsial Diseases≫ ed. by Kazár et al. pp.53–64. Slovak Academy of Sciences. Bratislava.

    Google Scholar 

  33. LenzH. and WalkerD. (1988). Protective monoclonal antibodies recognize heat-labile epitopes on surface protein of spotted fever group rickettsiae. Infect. Immun., 56: 2587–2593.

    Google Scholar 

  34. LyleP. and BurgdorferW. (1971), Fine structure of Rickettsia canada in tissues of Dermacentor andersoni stiles. J. Bacteriol., 105: 1149–1159.

    Google Scholar 

  35. McClureW. (1985). Mechanism and control of transcription initiation in prokaryotes. Ann. Rev. Biochem., 54: 171–204.

    Google Scholar 

  36. McCaulT. and WilliamsJ. (1981). Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J. Bacteriol. 147: 1063–1076.

    Google Scholar 

  37. MinnickM.HeinzenR.DouthartR.MallaviaL. and FrazierM. (1990). Analysis of QpRS-specific sequences from Coxiella burnetii. Ann. N. Y. Acad. Sci., 590: 514–522.

    Google Scholar 

  38. MiyamuraS.OhtaT. and TamuraA. (1989). Comparison of in vitro susceptibility of Rickettsia prowazekii, R. rickettsii, R. sibirica and R. tsutsugamushi to antimicrobial agents. Jpn. J. Bacteriol., 44: 717–721.

    Google Scholar 

  39. MovvaN.NakamuraK. and InouyeM. (1980). Amino acid sequence of the signal peptide of OmpA protein, a major outer membrane protein of Escherichia coli. J. Biol. Chem., 255: 27–29.

    Google Scholar 

  40. MurataM.YoshidaY.OsonoM.OhashiN.OyanagiM.UrakamiH.TamuraA.NogamiS.TanakaH. and KawamuraA. (1986). Production and characterization of monoclonal strain-specific antibodies against prototype strain of Rickettsia tsutsugamushi. Microbiol. Immunol., 30: 599–610.

    Google Scholar 

  41. MyersW.BacaO. and WissemanC. (1980). Genome size of the rickettsia Coxiella burnetii. J. Bacteriol., 144: 460–461.

    Google Scholar 

  42. MyersW.GrossmanD. and WissemanC. (1984). Antibiotic susceptibility patterns in Rochalimaea quintana, the agent of trench fever. Antimicrobiol. Agents Chemother., 25: 690–693.

    Google Scholar 

  43. MyersW.OrmsbeeR.OstermanJ. and WissemanC. (1967). The presence of diaminopimelic acid in the rickettsiae. Proc. Soc. Exp. Biol. Med., 125: 459–462.

    Google Scholar 

  44. MyersW. and WissemanC. (1980). Genetic relatedness among the typhus group of rickettsiae. Int. J. Sys. Bacteriol.30: 143–150.

    Google Scholar 

  45. MyersW. and WissemanC. (1981). The taxonomic relationship of Rickettsia canada to the typhus and spotted fever groups of the genus Rickettsia. In ≪Rickettsiae and Rickettsial Diseases≫ ed. by Burgdorfer and Anacker. pp313–325. Academic Press, New York.

    Google Scholar 

  46. MyersW.WissemanC.FisetP.OaksE. and SmithJ. (1979). Taxonomic relationship of vole agent to Rochalimaea quintana. Infect. Immun., 26: 976–983.

    Google Scholar 

  47. NagayoM.TamiyaT.MitamuraT. and SatoK. (1930). On the virus of Tsutsugamushi disease and its demonstration by a new method. Jpn. J. Exp. Med., 8: 309–318.

    Google Scholar 

  48. OgataN. (1931). Aetiologie der Tsutsugamushi-Krankheit: Rickettsia tsutsugamushi. Zentrabl. Bakteriol. Parasitenk. Hyg. Abt. I Orig., 122: 249–253.

    Google Scholar 

  49. OhashiN.NashimotoH.IkedaH. and TamuraA. (1990). Cloning and sequencing of the gene (tsg56) encoding a type-specific antigen from Rickettsia tsutsugamushi. Gene, 91: 119–122.

    Google Scholar 

  50. OhashiN.TamuraA.OhtaM. and HayashiK. (1989). Purification and partial characterization of a type-specific antigen of Rickettsia tsutsugamushi. Infect. Immun., 57: 1427–1431.

    Google Scholar 

  51. OhashiN.TamuraA.SakuraiH. and YamamotoS. (1990). Characterization of a new antigenic type, Kuroki, of Rickettsia tsutsugamushi isolated from a patient in Japan. J. Clin. Microbiol., 28: 2111–2113.

    Google Scholar 

  52. OhashiN.TamuraA. and SutoT. (1988). Immunoblotting analysis of anti-rickettsial antibodies produced in patients of Tsutsugamushi disease. Microbiol. Immunol., 32: 1085–1092.

    Google Scholar 

  53. OliverD. (1985). Protein secretion in Escherichia coli. Ann. Rev. Microbiol., 39: 615–648.

    Google Scholar 

  54. PalmerE.MallaviaL.TzianabosT. and ObijeskiJ. (1974). Electron microscopy of the cell wall of Rickettsia prowazeki. J. Bacteriol., 118: 1158–1166.

    Google Scholar 

  55. PalmerE.MartinM. and MallaviaL. (1974). Ultrastructure of the surface of Rickettsia prowazeki and Rickettsia akari. Appl. Microbiol., 28: 713–716.

    Google Scholar 

  56. PolicastroP.AndersonB. and McDonaldG. (1990). Promoter structure and expression of the 155-kDa surface antigen gene of Rickettsia rickettsii. Ann. N. Y. Acad. Sci., 590: 468–477.

    Google Scholar 

  57. PopovV.DyuisalievaR.SmirnovaN.TarasevichI. and RybkinN. (1986). Ultrastructure of Rickettsia sibirica during interaction with the host cell. Acta Virol., 30: 494–498.

    Google Scholar 

  58. PopovV. and IgnatovichV. (1976). Electron microscopy of surface structures of Rickettsia prowazeki stained with rutenium red. Acta Virol. 20: 424–428.

    Google Scholar 

  59. PopovV.ProzorovskyS.VovkO.KekcheevaN.SmirnovaN. and BarkhatovaO. (1987). Electron microscopic analysis of in vitro interaction of Rickettsia prowazekii with guinea pig macrophages. I. Macrophages from nonimmune animals. Acta Virol., 31: 53–58.

    Google Scholar 

  60. RaoultD.RoussellierP.VestrisG.GalicherV.PerezR. and TamaletJ. (1987). Susceptibility of Rickettsia conorii and R. rickettsii to pefloxacin, in vitro and in vivo. J. Amer. Chemothera., 19: 303–305.

    Google Scholar 

  61. RikihisaY. (1984). Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat. Rec., 208: 319–327.

    Google Scholar 

  62. RikihisaY. and ItoS. (1980). Localization of electron-dense tracers during entry of Rickettsia tsutsugamushi into polymorphonuclear leukocytes. Infect. Immun., 30: 231–243.

    Google Scholar 

  63. RikihisaY. and ItoS. (1983). Effect of antibody on entry of Rickettsia tsutsugamushi into polymorphonuclear leukocyte cytoplasm. Infect. Immun., 39: 928–938.

    Google Scholar 

  64. Schmeer N. Langel J. Mueller P. Rantamaki L. and Wieda J. (1987). Differential immunoglobulin G subclass responses of mice, guinea pigs, and cattle to Coxiella burnetii detected by enzyme- linked immunosorbent fluorescence assay (ELIFA). In proceedings of the first International meeting on Rickettsiology, the present and the future. Palermo Italy.

  65. SchramekS. (1974). Deoxyribonucleic acid base composition of rickettsiae belonging to the Rocky Mountain spotted fever group isolated in Czechoslovakia. Acta Virol., 18: 173–174.

    Google Scholar 

  66. SchramekS. and MayerH. (1982). Different sugar compositions of lipopolysaccharides isolated from phase I and pure phase II cells of Coxiella burnetii. Infect. Immun., 38: 53–57.

    Google Scholar 

  67. SchramekS.Radziejewska-LebrechtJ. and MayerH. (1985). 3-C-branched aldoses in lipopolysaccharide of phase I Coxiella burnetii and their role as immunodominant factors. Eur. J. Biochem., 148: 455–461.

    Google Scholar 

  68. ShineJ. and DalgarnoL. (1974). The 3′ terminal sequence of E. coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosomal binding sites. Proc. Natl. Acad. Sci. USA, 71: 1342–1346.

    Google Scholar 

  69. ShishidoA. (1962). Identification and serological classification of the causative agent of scrub typhus in Japan. Jpn. J. Med. Sci. Biol., 15: 308–321.

    Google Scholar 

  70. ShishidoA. (1964). Strain variation of Rickettsia orientalis in the complement fixation test. Jpn. J. Med. Sci. Biol., 17: 59–72.

    Google Scholar 

  71. SilvermanD. and WissemanC. (1978). Comparative ultrastructural study on the cell envelopes of Rickettsia prowazekii, Rickettsia rickettsii and Rickettsia tsutsugamushi. Infect. Immun., 21: 1020–1023.

    Google Scholar 

  72. SilvermanD. and WissemanC. (1979). In vitro studies of rickettsia-host cell interactions: ultrastructural changes induced by Rickettsia rickettsii infection of chicken embryo fibroblasts. Infect. Immun., 26: 714–727.

    Google Scholar 

  73. SilvermanD.WissemanC.WaddellA. and JonesM. (1987). External layers of Rickettsia prowazekii and Rickettsia rickettsii-occurrence of a slime layer. Infect. Immun., 22: 233–246.

    Google Scholar 

  74. SilvermanD.WissemanC. and WaddellA. (1980). In vitro studies of rickettsia-host cell interactions: ultrastructural study of Rickettsia prowazekii-infected chicken embryo fibroblasts. Infect. Immun., 29: 778–790.

    Google Scholar 

  75. SmirnovaN.PopovV. and KokorinI. (1986). Peculiarities of Rickettsia prowazekii in the cell culture as revealed by cryoultramicrotomy. Acta Virol., 30: 436–439.

    Google Scholar 

  76. SpicerE. and NobleJ. (1982). Escherichia coli heat-labile enterotoxin. J. Biol. Chem., 257: 5716–5721.

    Google Scholar 

  77. StorkE. and WissemanC. (1976). Growth of Rickettsia prowazekii in enucleated cells. Infect. Immun., 13: 1743–1748.

    Google Scholar 

  78. StoverC.MaranaD.CarterJ.RoeB.MardisE. and OaksE. (1990). The 56-kilodalton major protein antigen of Rickettsia tsutsugamushi: molecular cloning and sequence analysis of the sta56 gene and precise identification of a strain-specific epitope. Infect. Immun., 58: 2076–2084.

    Google Scholar 

  79. StoverC.MaranaD.DaschG. and OaksE. (1990). Molecular cloning and sequence analysis of the Sta58 major antigen gene of Rickettsia tsutsugamushi: sequence homology and antigenic comparison of Sta58 to the 60-kilodalton family of stress proteins. Infect. Immun., 58: 1360–1368.

    Google Scholar 

  80. TamuraA.OhashiN.UrakamiH.TakahashiK. and OyanagiM. (1985). Analysis of polypeptide composition and antigenic components of Rickettsia tsutsugamushi by polyacrylamide gel electrophoresis and immunoblotting. Infect. Immun., 43: 671–675.

    Google Scholar 

  81. TamuraA.TakahashiK.TsuruharaT.UrakamiH.MiyamuraS.SekikawaH.KenmotsuM.ShibataM.AbeS. and NezuH. (1984). Isolation of Rickettsia tsutsugamushi antigenically different from Kato, Karp, and Gilliam strains from patients. Microbiol. Immunol., 28: 873–882.

    Google Scholar 

  82. TamuraA.UrakamiH. and TsuruharaT. (1982). Purification of Rickettsia tsutsugamushi by Percoll density gradient centrifugation. Microbiol. Immunol., 26: 321–328.

    Google Scholar 

  83. TyeryarF.WeissE.MillarD.BozemanF. and OrmsbeeR. (1973). DNA base composition of rickettsiae. Science, 180: 415–417.

    Google Scholar 

  84. UrakamiH.OhashiN.TsuruharaT. and TamuraA. (1986). Characterization of polypeptides in Rickettsia tsutsugamushi: effect of preparative conditions on migration of polypeptides in polycrylamide gel electrophoresis. Infect. Immun., 51: 948–952.

    Google Scholar 

  85. UrakamiH.TakahashiM.TamuraA. and HoriE. (1988). Electron microscopic observations of the embryo Leptotrombidium (Leptotrombidium) pallidum naturally infected with Rickettsia tsutsugamushi. Microbiol. Immunol., 32: 967–972.

    Google Scholar 

  86. UrakamiH.TsuruharaT. and TamuraA. (1982). Observations of the same whole cells infected with Rickettsia tsutsugamushi by means of transmission and scanning electron microscopy. J. Electron Microscopy, 31: 212–215.

    Google Scholar 

  87. UrakamiH.TsuruharaT. and TamuraA. (1982). Penetration of Rickettsia tsutsugamushi into cultured mouse fibroblasts (L cells): an electron microscopic observation. Microbiol. Immunol., 27: 251–263.

    Google Scholar 

  88. UrakamiH.TsuruharaT. and TamuraA. (1982). Intranuclear Rickettsia tsutsugamushi in cultured mouse fibrobrasts (L cells). Microbiol. Immunol., 26: 445–447.

    Google Scholar 

  89. UrakamiH.TsuruharaT. and TamuraA. (1984). Electron microscopic studies of intracellular multiplication of Rickettsia tsutsugamushi in L cells. Microbiol. Immunol., 28: 1191–1201.

    Google Scholar 

  90. VodokinM. and WilliamsJ. (1988). A heat shock operon in Coxiella burnetii produces a major antigen homologous to a protein in both Mycobacteria and Escherichia coli. J. Bacteriol., 170: 1227–1234.

    Google Scholar 

  91. WeissE.DaschG.WoodmanD. and WilliamsJ. (1978). Vole agent identified as a strain of the trench fever rickettsia, Rochalimaea quintana. Infect. Immun., 19: 1013–1020.

    Google Scholar 

  92. WeisburgWDobsonM.SamuelJ.DaschG.MallaviaL.BacaO.MandelcoL.SechrestJ.WeissE. and WoeseC. (1989). Phylogenetic diversity of the rickettsiae. J. Bacteriol., 171: 4202–4206.

    Google Scholar 

  93. WellsM. and RikihisaY. (1988). Lack of lysosomal fusion with phagosomes containing Ehrlichia risticii in P388D1 cells: abrogation of inhibition with oxytetracycline. Infect. Immun., 56: 3209–3215.

    Google Scholar 

  94. WilliamsonL.PlanoG.WinklerH.KrauseD. and WoodD. (1989). Nucleotide sequence of the Rickettsia prowazekii ATP/ADP translocase-encoding gene. Gene, 80: 269–278.

    Google Scholar 

  95. WilliamsJ. and StewartS. (1984). Identification of immunogenic protein of Coxiella burnetii phase variants. In ≪Microbiology≫ pp. 257–262. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  96. WilliamsJ.WalkerD.PeacockM. and StewartS. (1986). Humoral immune response to Rocky Mountain spotted fever in experimentally infected guinea pigs: immunoprecipitation of lactoperoxidase 125I-labeled proteins and detection of soluble antigens of Rickettsia rickettsii. Infect. Immun., 52: 120–127.

    Google Scholar 

  97. WinklerH. and WoodD. (1988). Codon usage in selected AT-rich bacteria. Biochimie, 70: 977–986.

    Google Scholar 

  98. WissemanC.SilvermanD.WaddellA. and BrownD. (1982). Penicillin-induced unstable intracellular formation of spheroplasts by rickettsiae. J. Infect. Dis., 146: 147–158.

    Google Scholar 

  99. WissemanC.WaddellA. and SilvermanD. (1976). In vitro studies on rickettsia-host cell interactions: lag phase in intracellular growth cycle as a function of stage of growth of infecting Rickettsia prowazekii, with preliminary observations on inhibition of rickettsial uptake by host cell fragments. Infect. Immun., 13: 1749–1760.

    Google Scholar 

  100. WissemanC.WaddellA. and WalshW. (1974). In vitro studies of the action of antibiotics on Rickettsia prowazeki by two basic methods of cell culture. J. Infect. Dis., 130: 564–574.

    Google Scholar 

  101. WoodD.WilliamsonL.WinklerH. and KrauseD. (1987). Nucleotide sequence of the Rickettsia prowazekii citrate synthase gene. J. Bacteriol., 169: 3564–3572.

    Google Scholar 

  102. WrightJ.HastriterM. and RobinsonD. (1984). Observations on the ultrastructure and distribution of Rickettsia tsutsugamushi in naturally infected Leptotrombidium (Leptotrombidium) arenicola (Acari: rombiculidae). J. Med, Entomol., 21: 17–27.

    Google Scholar 

  103. YamamotoS.KawabataN.OuraK.MurataM. and MinamishimaY. (1989). Antigenic types of Rickettsia tsutsugamushi isolated from patients with tsutsugamushi fever and their distribution in Miyazaki Prefecture. J. Jpn. Assoc. Infect. Dis., 63: 109–117.

    Google Scholar 

  104. YamamotoS.KawabataN.TamuraA.UrakamiH.OhashiN.MurataM.YoshidaY. and KawamuraA. (1986). Immunological properties of Rickettsia tsutsugamushi, Kawasaki strain, isolated from a patient in Kyushu. Microbiol. Immunol., 30: 611–620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, A., Urakami, H. & Ohashi, N. A comparative view of Rickettsia tsutsugamushi and the other groups of rickettsiae. Eur J Epidemiol 7, 259–269 (1991). https://doi.org/10.1007/BF00145675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00145675

Key words

Navigation