Skip to main content
Log in

Kolmogorov unstable stellar oscillations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We survey the mathematics of non-linear Hamiltonian oscillations with emphasis being laid on the more recently discovered Kolmogorov instability. In the context of radial adiabatic oscillations of stars this formalism predicts a Kolmogorov instability even at low oscillation energies, provided that sufficiently high linear asymptotic modes have been excited.

Numerical analysis confirms the occurrence of this instability. It is found to show up already among the lowest order modes, although high surface amplitudes are then required (¦δr¦/R ∼ 0.5 for an unstable fundamental mode - first harmonic coupling). On the basis of numerical evidence we conjecture that in the Kolmogorov unstable regime the enhanced coupling due to internal resonance effects leads to an equipartition of energy over all interacting degrees of freedom. We also indicate that the power spectrum of such oscillations is expected to display two components: A very broad band of overlapping pseudo-linear frequency peaks spread out over the asymptotic range, and a strictly non-linear l/f-noise type component close to the frequency origin.

It is finally argued that the Kolmogorov instability is likely to occur among non-linearly coupled non-radial stellar modes at a surface amplitude much lower than in the radial case. This lends support to the view that this instability might be operative among the solar oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I.: 1963a, Russian Math. Surveys 18 (6), 85.

    Google Scholar 

  • Arnold, V. I.: 1963b, Russian Math. Surveys 18 (5), 9.

    Google Scholar 

  • Arnold, V. I.: 1976, Méthodes Mathématiques de la Mécanique Classique, éd. Mir Moscow, App. 7.

  • Birkhoff, G. D.: 1927, Dynamical Systems, American Mathematical Society, Providence, Rhode Island (Revised edition by J. Moser, 1966).

    Google Scholar 

  • Blacher, S. and Perdang, J.: 1981a, Physica 3D, 512.

    Google Scholar 

  • Blacher, S. and Perdang, J.: 1981b, Monthly Notices Roy. Astron. Soc. 19, 109 P.

  • Brown, T. M., Stebbins, R. T., and Hill, H. A.: 1978, Astrophys. J. 223, 324.

    Google Scholar 

  • Chirikov, B.: 1979, Physics Reports 52, 265.

    Google Scholar 

  • Christensen-Dalsgaard, J. and Gough, D. O.: 1980, Nature 288, 544.

    Google Scholar 

  • Demaret, J., Dzuba, V., and Perdang, J.: 1978, Astron. Astrophys. 70, 287.

    Google Scholar 

  • Fermi, E., Pasta, J., and Ulam, S.: 1955, Los Alamos Scientific Laboratory Report LA-1940.

  • Ford, J.: 1961, J. Math. Phys. 2, 387.

    Google Scholar 

  • Ford, J. and Lunsford, G. H.: 1971, Phys. Rev. A1, 59.

    Google Scholar 

  • Ford, J., and Waters, J.: 1963, J. Math. Phys. 4, 1293.

    Google Scholar 

  • Hénon, M. and Heiles, C.: 1964, Astron. J. 69, 73.

    Google Scholar 

  • Hirooka, H. and Saitô, N.: 1969, J. Phys. Soc. Japan 26, 624.

    Google Scholar 

  • Izrailev, F. M. and Chirikov, B. V.: 1966, Soviet Phys. Dokl. 11, 30.

    Google Scholar 

  • Kolmogorov, A. N.: 1957, ‘Théorie Genérale des Systèmes Dynamiques et Mécanique Classique’, Proc. Int. Congress of Math., Amsterdam (Appendix D in R. Abraham, 1967, Foundation of Mechanics, Benjamin, New York)

  • Ledoux, P. and Perdang, J.: 1980, Bull. Soc. Math. Belgique 32, 135.

    Google Scholar 

  • Moser, J.: 1962, Nachr. der Akad. der Wissensch. in Göttingen Math.-Phys. Kl., 1.

  • Moser, J.: 1973, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press.

  • Nekhoroshev, N. N.: 1977, Russian Math. Surveys 32 (6), 1.

    Google Scholar 

  • Noid, D. W., Koszykowski, M. L., and Marcus, R. A.: 1977, J. Chem. Phys. 67, 404.

    Google Scholar 

  • Papaloizou, J. C. B.: 1973a, Monthly Notices Roy. Astron. Soc. 162, 143.

    Google Scholar 

  • Papaloizou, J. C. B.: 1973b, Monthly Notices Roy. Astron. Soc. 162, 169.

    Google Scholar 

  • Perdang, J.: 1981, Astrophys. Space Sci. 74, 149.

    Google Scholar 

  • Perdang, J. and Blacher, S.: 1982a, Astron. Astrophys. 112, 35.

    Google Scholar 

  • Perdang, J. and Blacher, S.: 1982b, in preparation.

  • Poincaré, H.: 1890, Acta Math. 13, 1.

    Google Scholar 

  • Poincaré, H.: 1912, Rendic. Circ. Mat. Palermo 33, 375.

    Google Scholar 

  • Powell, G. E. and Percival, I. C.: 1979, J. Phys. A.: Math. Gen. 12, 2053.

    Google Scholar 

  • Rosseland, S.: 1949, The Pulsation Theory of Variable Stars, Clarendon Press, Oxford, Sections 4.3, 4.4, 4.5; Chapter 7.

    Google Scholar 

  • Siegel, C. L.: 1954, Math. Ann. 128, 144.

    Google Scholar 

  • Simon, N.: 1972, Astron. Astrophys. 21, 45.

    Google Scholar 

  • Walker, G. H. and Ford, J.: 1969, Phys. Rev. 188, 416.

    Google Scholar 

  • Woltjer, J.: 1935, Monthly Notices Roy. Astron. Soc. 95, 260.

    Google Scholar 

  • Woltjer, J.: 1937, Bull. Astron. Inst. Netherlands 8, 193.

    Google Scholar 

  • Woltjer, J.: 1943, Bull. Astron. Inst. Netherlands 9, 435.

    Google Scholar 

  • Zaslavskii, G. M. and Chirikov, B. V.: 1971, Soviet Physics Uspekhi 14, 549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.

Chercheur Qualifié FNRS, Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perdang, J. Kolmogorov unstable stellar oscillations. Sol Phys 82, 297–321 (1983). https://doi.org/10.1007/BF00145570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00145570

Keywords

Navigation