Skip to main content
Log in

Paleoclimate data constraints on climate sensitivity: The paleocalibration method

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The relationship between paleoclimates and the future climate, while not as simple as implied in the ‘paleoanalog’ studies of Budyko and others, nevertheless provides sufficient constraints to broadly confirm the climate sensitivity range of theoretical models and perhaps eventually narrow the model-derived uncertainties. We use a new technique called ‘paleocalibration’ to calculate the ratio of temperature response to forcing on a global mean scale for three key intervals of Earth history. By examining surface conditions reconstructed from geologic data for the Last Glacial Maximum, the middle Cretaceous and the early Eocene, we can estimate the equilibrium climate sensitivity to radiative forcing changes for different extreme climates. We find that the ratios for these three periods, within error bounds, all lie in the range obtained from general circulation models: 2–5 K global warming for doubled atmospheric carbon dioxide. Paleocalibration thus provides a data-based confirmation of theoretically calculated climate sensitivity. However, when compared with paleodata on regional scales, the models show less agreeement with data. For example, our GCM simulation of the early Eocene fails to obtain the temperature contrasts between the Equator and the Poles (and between land and ocean areas) indicated by the data, even though it agrees with the temperature data in the global average. Similar results have been reported by others for the Cretaceous and for the Last Glacial Maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur, M. A., Hinga, K. R., Pilson, M. E., Whitaker, E., and Allard, D.: 1991, ‘Estimates of pCO2 for the Last 120 Ma Based on the d13C of Marine Phytoplanktic Organic Matter’, [abs.], Eos (Transactions, American Geophysical Union) 72, no. 17, suppl., 166.

    Google Scholar 

  • Barron, E. J.: 1987, ‘Eocene Equator-to-Pole Surface Ocean Temperatures: A Significant Climate Problem?’, Paleoceanogr. 2, 729–739.

    Google Scholar 

  • Barron, E. J.: 1993, Paper presented at the American Geophysical Union Spring Meeting, Baltimore, 24–28 May.

  • Barron, E.J., Fawcett, P.J., Peterson, W.H., Pollard, D., and Thompson, S.L.: 1995, ‘A “Simulation” of Mid-Cretaceous Climate’, Paleoceanogr., (in press).

  • Barron, E.J., Fawcett, P.J., Pollard, D., and Thompson, S.L.: 1993, ‘Model Simulations of Cretaceous Climates: The Role of Geography and Carbon Dioxide’, Phil. Trans. Roy. Soc. Lond. B 341, 307–316.

    Google Scholar 

  • Barron, E. J. and Washington, W. M.: 1982, ‘Cretaceous Climate: A Comparison of Atmospheric Simulations with the Geologic Record’, Palaeogeog., Palaeoclim., Palaeoecol. 40, 103–133.

    Google Scholar 

  • Barron, E. J. and Washington, W. M.: 1984, ‘Warm Cretaceous Climates: High Atmospheric CO2 as a Plausible Mechanism’, in Sundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO 2, Natural Variations, Archean to Present, American Geophysical Union, Washington, DC, pp. 546–553.

    Google Scholar 

  • Berner, R.: 1990, ‘Atmospheric Carbon Dioxide Levels over Phanerozoic Time’, Science 249, 1382–1386.

    Google Scholar 

  • Berner, R.: 1991, ‘A Model for Atmospheric CO2 over Phanerozoic Time’, Amer. J. Sci. 291, 339–376.

    Google Scholar 

  • Bluth, G. J. S. and Kump, L. R.: 1991, ‘Phanerozoic Paleogeology’, Amer. J. Sci. 291, 284–308.

    Google Scholar 

  • Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359, 716–718.

    Google Scholar 

  • Budyko, M. and Izrael, Y.: 1987, Anthropogenic Climate Changes, Gidrometeoizdat, Leningrad (in Russian; English translation by University of Arizona Press, 1990).

    Google Scholar 

  • Cerling, T.: 1992, ‘Carbon Dioxide in the Atmosphere: Evidence from Cenozoic and Mesozoic Paleosols’, Amer. J. Sci. 291, 377–400.

    Google Scholar 

  • Cess, R. D. and Potter, G. L.: 1988, ‘A Methodology for Understanding and Intercomparing Atmospheric Climate Feedback Processes in General Circulation Models’, J. Geophys. Res. 93, 8305–8314.

    Google Scholar 

  • Chou, M.-D.: 1994, ‘Coolness in the Tropical Pacific during an El Niño Episode’, J. Clim. 7, 1684–1692.

    Google Scholar 

  • CLIMAP Project members: 1976, ‘The Surface of the Ice-Age Earth’, Science 191, 1131–1137.

    Google Scholar 

  • COHMAP Project Members: 1988, ‘Climatic Changes of the Last 18,000 Years: Observations and Model Simulations’, Science 241, 1043–1052.

    Google Scholar 

  • Covey, C., Taylor, K. E., and Dickinson, R. E.: 1991, ‘Upper Limit for Sea Ice Albedo Feedback Contribution to Global Warming’, J. Geophys. Res. 96, 9169–9174.

    Google Scholar 

  • Crowley, T.: 1990, ‘Are There Any Satisfactory Geologic Analogs for Future Greenhouse Warming’, J. Clim. 3, 1282–1292.

    Google Scholar 

  • Crowley, T.: 1991, ‘CO2 Changes and Tropical Sea Surface Temperatures’, Paleoceanogr. 6, 387–394.

    Google Scholar 

  • Crowley, T., Baum, S. K., and Hyde, W. T.: 1991, ‘Climate Model Comparison of Gondwanan and Laurentide Glaciations’, J. Geophys. Res. 96, 9217–9226.

    Google Scholar 

  • Crowley, T. and Kim, K.-Y.: 1995, ‘Comparison of Longterm Greenhouse Projections with the Geologic Record’, Geophys. Res. Lett., (in press).

  • Crowley, T. and North: 1991, Paleoclimatology, Oxford University Press, New York, 339 pp.

    Google Scholar 

  • Del Genio, A. D., Kovari, W. Jr., and Yao, M.-S.: 1994, ‘Climatic Implications of the Seasonal Variation of Upper Tropospheric Water Vapor’, Geophys. Res. Lett. 21, 2701–2704.

    Google Scholar 

  • Freeman, K. and Hayes, P.: 1992, ‘Fractionation of Carbon Isotopes by Phytoplankton and Estimates of Ancient CO2 Levels’, Global Biogeochem. Cycl. 6, 185–198.

    Google Scholar 

  • Gates, W. L.: 1992, ‘AMIP: The Atmospheric Model Intercomparison Project’, Bull. Amer. Met. Soc. 73, 1962–1970.

    Google Scholar 

  • Grotch, S. L. and MacCracken, M. C.: 1991, ‘The Use of General Circulation Models to Predict Regional Climatic Change’, J. Clim. 3, 286–303.

    Google Scholar 

  • Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L.: 1994, ‘Tropical Temperature Variations since 20,000 Years Ago: Modulating Interhemispheric Climate Change’, Science 263, 663–665.

    Google Scholar 

  • Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G.: 1981, ‘Climatic Impact of Increasing Atmospheric Carbon Dioxide’, Science 213, 957–966.

    Google Scholar 

  • Hansen, J., Lacis, A., Ruedy, R., Sato, M., and Wilson, W.: 1993, ‘How Sensitive is the World's Climate?’, National Geogr. Res. Exploration 9, 142–158.

    Google Scholar 

  • Hansen, J., Russell, G., Lacis, A., Fung, I., and Rind, D.: 1985, ‘Climate Response Times: Dependence on Climate Sensitivity and Ocean Mixing’, Science 229, 857–859.

    Google Scholar 

  • Hansen, J., Sato, S., and Ruedy, R.: 1995, ‘Wonderland Model: Radiative Forcing Experiments’, (in preparation for J. Geophys. Res.).

  • Hartmann, D. L. and Michelsen, M. L.: 1993, ‘Large-Scale Effects on the Regulation of Tropical Sea Surface Temperature’, J. Clim. 6, 2049–2062.

    Google Scholar 

  • Hecht, A.: 1985, Paleoclimate Analysis and Modeling, Wiley-Interscience Publishers, New York, 445 pp.

    Google Scholar 

  • Hoffert, M. I.: 1993, Paper presented at the American Geophysical Union Spring Meeting, Baltimore, 24–28 May.

  • Hoffert, M. I. and Covey, C.: 1992, ‘Deriving Global Climate Sensitivity from Palaeoclimate Reconstructions’, Nature 360, 573–576.

    Google Scholar 

  • Hoffert, M. I., Flannery, B. P., Callegari, A. J., Hsieh, C.-T., and Wiscombe, W.: 1983, ‘Evaporation-Limited Tropical Temperatures as a Constraint on Climate Sensitivity’, J. Atmos. Sci. 40, 1659–1668.

    Google Scholar 

  • Horrell, M.: 1990, ‘Energy Balance Constraints on 18O Based Paleo-Sea Surface Temperature Estimates’, Paleoceanog. 5, 339–348.

    Google Scholar 

  • Imbrie, J. and Imbrie, K. P.: 1979, Ice Ages: Solving the Mystery, Enslow Publishers.

  • Kellogg, W.: 1977, Effects of Human Activities on Global Climate, WMO Report No. 486, World Meteorology Organization, Geneva.

    Google Scholar 

  • Kerr, R.: 1993, ‘Fossils Tell of Mild Winters in an Ancient Hothouse’, Science 261, 682.

    Google Scholar 

  • Kirk-Davidoff, D. B. and Lindzen, R. S.: 1993, Paper presented at the American Geophysical Union annual Fall Meeting, San Francisco, CA.

  • Lindzen, R. S.: 1990, ‘Some Coolness Concerning Global Warming’, Bull. Amer. Meteorol. Soc. 71, 288–299.

    Google Scholar 

  • Lindzen, R. S.: 1993, ‘Paleoclimate Sensitivity’, Nature 363, 25–26.

    Google Scholar 

  • Lindzen, R. S.: 1995, ‘How Cold Would We Get under CO2-Less Skies?’, Physics Today, February issue, 78–80.

  • Lindzen, R. S. and Pan, W.: 1994, ‘A Note on Orbital Control of Equator-to-Pole Heat Fluxes’, Clim. Dynam. 10, 49–57.

    Google Scholar 

  • Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Le Treut, H.: 1990, ‘The Ice-Core Record: Climate Sensitivity and Future Greenhouse Warming’, Nature 347, 139–145.

    Google Scholar 

  • Manabe, S. and Broccoli, A. J.: 1985, ‘A Comparison of Climate Model Sensitivity with Data from the Last Glacial Maximum’, J. Atmos. Sci. 42, 2643–2651.

    Google Scholar 

  • Markwick, P. J.: 1994, ‘“Equability”, Continentality, and Tertiary “Climate”: The Crocodilian Perspective’, Geology 22, 613–616.

    Google Scholar 

  • Mitchell, J. F. B., Senior, C. A., and Ingram, W. J.: 1989, ‘CO2 and Climate: A Missing Feedback?’, Nature 341, 132–134.

    Google Scholar 

  • Ramanathan, V. and Collins, W.: 1991, ‘Thermodynamic Regulation of Ocean Warming by Cirrus Clouds Deduced from Observations of the 1987 El Niño’, Nature 351, 27–32.

    Google Scholar 

  • Ramanathan, V. and Collins, W.: 1993, ‘A Thermostat in the Tropics?’, Nature 361, 410–411.

    Google Scholar 

  • Rampino, M. R. and Caldeira, K.: 1994, ‘The Goldilocks Problem: Climatic Evolution and Long-Term Habitability of the Terrestrial Planets’, Ann. Rev. Astron. Astrophys. 32, 83–114.

    Google Scholar 

  • Raval, A., Oort, A. H., and Ramaswamy, V.: 1994, ‘Observed Dependence of Outgoing Longwave Radiation on Sea Surface Temperature and Moisture’, J. Clim. 7, 807–821.

    Google Scholar 

  • Raval, A. and Ramanathan, V.: 1989, ‘Observational Determination of the Greenhouse Effect’, Nature 342, 758–762.

    Google Scholar 

  • Raymo, M. E. and Rau, G. H.: ‘Mid-Pliocene Warmth: Stronger Greenhouse and Stronger Conveyor’, Science, (submitted).

  • Rind, D., Chiou, E.-W., Chu, W., Larsen, J., Oltmans, S., Lerner, J., McCormick, M. P., and McMaster, L.: 1991, ‘Positive Water Vapor Feedback in Climate Models Confirmed by Satellite Data’, Nature 349, 500–503.

    Google Scholar 

  • Rind, D. and Peteet, D.: 1985, ‘Terrestrial Conditions at the Last Glacial Maximum and CLIMAP Sea-Surface Temperature Estimates: Are They Consistent?’, Quat. Res. 24, 1–22.

    Google Scholar 

  • Robock, A.: 1978, ‘Internally and Externally Caused Climate Change’, J. Atmos. Sci. 35, 1111–1122.

    Google Scholar 

  • Sellwood, B. W., Price, G. D., and Valdes, P. J.: 1994, ‘Cooler Estimates of Cretaceous Temperatures’, Nature 370, 453–455.

    Google Scholar 

  • Shackleton, N. J. and Boersma, A.: 1981, ‘The Climate of the Eocene Ocean’, Geol. Soc. London J. 138, 153–157.

    Google Scholar 

  • Shine, K. P., Derwent, R. G., Wuebbles, D. J., and Morcrette, J.-J.: 1990, ‘Radiative Forcing of Climate’, in Houghton, J. T., Jenkins, G. J., and Ephraims, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, New York, pp. 41–68.

    Google Scholar 

  • Sloan, L. Cirbus: 1994, ‘Equable Climates During the Early Eocene: Significance of Regional Paleogeography for North American Climate’, Geology 22, 881–884.

    Google Scholar 

  • Sloan, L. Cirbus and Barron, E. J.: 1992, ‘Eocene Climate Model Results: Quantitative Comparison to Paleoclimatic Evidence’, Palaeogeog., Palaeoclim., Palaeoecol. 93, 183–202.

    Google Scholar 

  • Sloan, L. Cirbus and Rea, D. K.: 1995, ‘Atmospheric CO2 of the Early Eocene: A General Circulation Modeling Sensitivity Study’, Glob. Plan. Change, (in press).

  • Sloan, L. Cirbus, Walker, J. C. G., and Moore, T. C. Jr.: 1995, ‘The Role of Oceanic Heat Transport in Early Eocene Climate’, Paleoceanogr. 10, 347–356.

    Google Scholar 

  • Sloan, L. Cirbus, Walker, J. C. G., Moore, T. C. Jr., Rea, D. K., and Zachos, J. C.: 1992, ‘Possible Methane-Induced Polar Warming in the Early Eocene’, Nature 357, 320–322.

    Google Scholar 

  • Sun, D.-Z. and Lindzen, R. S.: 1993, ‘Distribution of Tropical Tropospheric Water Vapor’, J. Atmos. Sci. 50, 1644–1659.

    Google Scholar 

  • Walker, J. C. G. and Sloan, L. Cirbus: 1992, ‘Something is Wrong with Climate Theory’, Geotimes 37, 16–18.

    Google Scholar 

  • Warren, S. G. and Schneider, S. H.: 1979, ‘Seasonal Simulation as a Test for Uncertainties in the Parameterizations of a Budyko-Sellers Zonal Climate Model’, J. Atmos. Sci. 36, 1377–1391.

    Google Scholar 

  • Webb III, T., Crowley, T. J., Frenzel, B., Gliemeroth, A.-K., Jouzel, J., Labeyrie, L., Prentice, I. C., Rind, D., Ruddiman, W. F., Sarnthein, M., and Zwick, A.: 1993, ‘Group Report: Use of Paleoclimatic Data as Analogs for Understanding Future Global Changes’, in Global Changes in the Perspective of the Past, John Wiley & Sons, Chichester, England, pp. 50–71.

    Google Scholar 

  • Wigley, T. M. L. and Schlesinger, M. E.: 1985, ‘Analytical Solution for the Effect of Increasing CO2 on Global Mean Temperature’, Nature 315, 649–652.

    Google Scholar 

  • Wolfe, J.: 1985, ‘Distribution of Major Vegetational Types During the Tertiary’, inSundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present, Geophys. Monogr. 32, Am. Geophys. Union, Washington, D.C., pp. 357–375.

    Google Scholar 

  • Zachos, J. C., Stott, L. D., and Lohmann, K. C.: 1994, ‘Evolution of Early Cenozoic Marine Temperatures’, Paleoceanog. 9, 353–387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The U.S. Government right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covey, C., Sloan, L.C. & Hoffert, M.I. Paleoclimate data constraints on climate sensitivity: The paleocalibration method. Climatic Change 32, 165–184 (1996). https://doi.org/10.1007/BF00143708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143708

Keywords

Navigation