Paleoclimate data constraints on climate sensitivity: The paleocalibration method

Abstract

The relationship between paleoclimates and the future climate, while not as simple as implied in the ‘paleoanalog’ studies of Budyko and others, nevertheless provides sufficient constraints to broadly confirm the climate sensitivity range of theoretical models and perhaps eventually narrow the model-derived uncertainties. We use a new technique called ‘paleocalibration’ to calculate the ratio of temperature response to forcing on a global mean scale for three key intervals of Earth history. By examining surface conditions reconstructed from geologic data for the Last Glacial Maximum, the middle Cretaceous and the early Eocene, we can estimate the equilibrium climate sensitivity to radiative forcing changes for different extreme climates. We find that the ratios for these three periods, within error bounds, all lie in the range obtained from general circulation models: 2–5 K global warming for doubled atmospheric carbon dioxide. Paleocalibration thus provides a data-based confirmation of theoretically calculated climate sensitivity. However, when compared with paleodata on regional scales, the models show less agreeement with data. For example, our GCM simulation of the early Eocene fails to obtain the temperature contrasts between the Equator and the Poles (and between land and ocean areas) indicated by the data, even though it agrees with the temperature data in the global average. Similar results have been reported by others for the Cretaceous and for the Last Glacial Maximum.

This is a preview of subscription content, access via your institution.

References

  1. Arthur, M. A., Hinga, K. R., Pilson, M. E., Whitaker, E., and Allard, D.: 1991, ‘Estimates of pCO2 for the Last 120 Ma Based on the d13C of Marine Phytoplanktic Organic Matter’, [abs.], Eos (Transactions, American Geophysical Union) 72, no. 17, suppl., 166.

    Google Scholar 

  2. Barron, E. J.: 1987, ‘Eocene Equator-to-Pole Surface Ocean Temperatures: A Significant Climate Problem?’, Paleoceanogr. 2, 729–739.

    Google Scholar 

  3. Barron, E. J.: 1993, Paper presented at the American Geophysical Union Spring Meeting, Baltimore, 24–28 May.

  4. Barron, E.J., Fawcett, P.J., Peterson, W.H., Pollard, D., and Thompson, S.L.: 1995, ‘A “Simulation” of Mid-Cretaceous Climate’, Paleoceanogr., (in press).

  5. Barron, E.J., Fawcett, P.J., Pollard, D., and Thompson, S.L.: 1993, ‘Model Simulations of Cretaceous Climates: The Role of Geography and Carbon Dioxide’, Phil. Trans. Roy. Soc. Lond. B 341, 307–316.

    Google Scholar 

  6. Barron, E. J. and Washington, W. M.: 1982, ‘Cretaceous Climate: A Comparison of Atmospheric Simulations with the Geologic Record’, Palaeogeog., Palaeoclim., Palaeoecol. 40, 103–133.

    Google Scholar 

  7. Barron, E. J. and Washington, W. M.: 1984, ‘Warm Cretaceous Climates: High Atmospheric CO2 as a Plausible Mechanism’, in Sundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO 2, Natural Variations, Archean to Present, American Geophysical Union, Washington, DC, pp. 546–553.

    Google Scholar 

  8. Berner, R.: 1990, ‘Atmospheric Carbon Dioxide Levels over Phanerozoic Time’, Science 249, 1382–1386.

    Google Scholar 

  9. Berner, R.: 1991, ‘A Model for Atmospheric CO2 over Phanerozoic Time’, Amer. J. Sci. 291, 339–376.

    Google Scholar 

  10. Bluth, G. J. S. and Kump, L. R.: 1991, ‘Phanerozoic Paleogeology’, Amer. J. Sci. 291, 284–308.

    Google Scholar 

  11. Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359, 716–718.

    Google Scholar 

  12. Budyko, M. and Izrael, Y.: 1987, Anthropogenic Climate Changes, Gidrometeoizdat, Leningrad (in Russian; English translation by University of Arizona Press, 1990).

    Google Scholar 

  13. Cerling, T.: 1992, ‘Carbon Dioxide in the Atmosphere: Evidence from Cenozoic and Mesozoic Paleosols’, Amer. J. Sci. 291, 377–400.

    Google Scholar 

  14. Cess, R. D. and Potter, G. L.: 1988, ‘A Methodology for Understanding and Intercomparing Atmospheric Climate Feedback Processes in General Circulation Models’, J. Geophys. Res. 93, 8305–8314.

    Google Scholar 

  15. Chou, M.-D.: 1994, ‘Coolness in the Tropical Pacific during an El Niño Episode’, J. Clim. 7, 1684–1692.

    Google Scholar 

  16. CLIMAP Project members: 1976, ‘The Surface of the Ice-Age Earth’, Science 191, 1131–1137.

    Google Scholar 

  17. COHMAP Project Members: 1988, ‘Climatic Changes of the Last 18,000 Years: Observations and Model Simulations’, Science 241, 1043–1052.

    Google Scholar 

  18. Covey, C., Taylor, K. E., and Dickinson, R. E.: 1991, ‘Upper Limit for Sea Ice Albedo Feedback Contribution to Global Warming’, J. Geophys. Res. 96, 9169–9174.

    Google Scholar 

  19. Crowley, T.: 1990, ‘Are There Any Satisfactory Geologic Analogs for Future Greenhouse Warming’, J. Clim. 3, 1282–1292.

    Google Scholar 

  20. Crowley, T.: 1991, ‘CO2 Changes and Tropical Sea Surface Temperatures’, Paleoceanogr. 6, 387–394.

    Google Scholar 

  21. Crowley, T., Baum, S. K., and Hyde, W. T.: 1991, ‘Climate Model Comparison of Gondwanan and Laurentide Glaciations’, J. Geophys. Res. 96, 9217–9226.

    Google Scholar 

  22. Crowley, T. and Kim, K.-Y.: 1995, ‘Comparison of Longterm Greenhouse Projections with the Geologic Record’, Geophys. Res. Lett., (in press).

  23. Crowley, T. and North: 1991, Paleoclimatology, Oxford University Press, New York, 339 pp.

    Google Scholar 

  24. Del Genio, A. D., Kovari, W. Jr., and Yao, M.-S.: 1994, ‘Climatic Implications of the Seasonal Variation of Upper Tropospheric Water Vapor’, Geophys. Res. Lett. 21, 2701–2704.

    Google Scholar 

  25. Freeman, K. and Hayes, P.: 1992, ‘Fractionation of Carbon Isotopes by Phytoplankton and Estimates of Ancient CO2 Levels’, Global Biogeochem. Cycl. 6, 185–198.

    Google Scholar 

  26. Gates, W. L.: 1992, ‘AMIP: The Atmospheric Model Intercomparison Project’, Bull. Amer. Met. Soc. 73, 1962–1970.

    Google Scholar 

  27. Grotch, S. L. and MacCracken, M. C.: 1991, ‘The Use of General Circulation Models to Predict Regional Climatic Change’, J. Clim. 3, 286–303.

    Google Scholar 

  28. Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L.: 1994, ‘Tropical Temperature Variations since 20,000 Years Ago: Modulating Interhemispheric Climate Change’, Science 263, 663–665.

    Google Scholar 

  29. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G.: 1981, ‘Climatic Impact of Increasing Atmospheric Carbon Dioxide’, Science 213, 957–966.

    Google Scholar 

  30. Hansen, J., Lacis, A., Ruedy, R., Sato, M., and Wilson, W.: 1993, ‘How Sensitive is the World's Climate?’, National Geogr. Res. Exploration 9, 142–158.

    Google Scholar 

  31. Hansen, J., Russell, G., Lacis, A., Fung, I., and Rind, D.: 1985, ‘Climate Response Times: Dependence on Climate Sensitivity and Ocean Mixing’, Science 229, 857–859.

    Google Scholar 

  32. Hansen, J., Sato, S., and Ruedy, R.: 1995, ‘Wonderland Model: Radiative Forcing Experiments’, (in preparation for J. Geophys. Res.).

  33. Hartmann, D. L. and Michelsen, M. L.: 1993, ‘Large-Scale Effects on the Regulation of Tropical Sea Surface Temperature’, J. Clim. 6, 2049–2062.

    Google Scholar 

  34. Hecht, A.: 1985, Paleoclimate Analysis and Modeling, Wiley-Interscience Publishers, New York, 445 pp.

    Google Scholar 

  35. Hoffert, M. I.: 1993, Paper presented at the American Geophysical Union Spring Meeting, Baltimore, 24–28 May.

  36. Hoffert, M. I. and Covey, C.: 1992, ‘Deriving Global Climate Sensitivity from Palaeoclimate Reconstructions’, Nature 360, 573–576.

    Google Scholar 

  37. Hoffert, M. I., Flannery, B. P., Callegari, A. J., Hsieh, C.-T., and Wiscombe, W.: 1983, ‘Evaporation-Limited Tropical Temperatures as a Constraint on Climate Sensitivity’, J. Atmos. Sci. 40, 1659–1668.

    Google Scholar 

  38. Horrell, M.: 1990, ‘Energy Balance Constraints on 18O Based Paleo-Sea Surface Temperature Estimates’, Paleoceanog. 5, 339–348.

    Google Scholar 

  39. Imbrie, J. and Imbrie, K. P.: 1979, Ice Ages: Solving the Mystery, Enslow Publishers.

  40. Kellogg, W.: 1977, Effects of Human Activities on Global Climate, WMO Report No. 486, World Meteorology Organization, Geneva.

    Google Scholar 

  41. Kerr, R.: 1993, ‘Fossils Tell of Mild Winters in an Ancient Hothouse’, Science 261, 682.

    Google Scholar 

  42. Kirk-Davidoff, D. B. and Lindzen, R. S.: 1993, Paper presented at the American Geophysical Union annual Fall Meeting, San Francisco, CA.

  43. Lindzen, R. S.: 1990, ‘Some Coolness Concerning Global Warming’, Bull. Amer. Meteorol. Soc. 71, 288–299.

    Google Scholar 

  44. Lindzen, R. S.: 1993, ‘Paleoclimate Sensitivity’, Nature 363, 25–26.

    Google Scholar 

  45. Lindzen, R. S.: 1995, ‘How Cold Would We Get under CO2-Less Skies?’, Physics Today, February issue, 78–80.

  46. Lindzen, R. S. and Pan, W.: 1994, ‘A Note on Orbital Control of Equator-to-Pole Heat Fluxes’, Clim. Dynam. 10, 49–57.

    Google Scholar 

  47. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Le Treut, H.: 1990, ‘The Ice-Core Record: Climate Sensitivity and Future Greenhouse Warming’, Nature 347, 139–145.

    Google Scholar 

  48. Manabe, S. and Broccoli, A. J.: 1985, ‘A Comparison of Climate Model Sensitivity with Data from the Last Glacial Maximum’, J. Atmos. Sci. 42, 2643–2651.

    Google Scholar 

  49. Markwick, P. J.: 1994, ‘“Equability”, Continentality, and Tertiary “Climate”: The Crocodilian Perspective’, Geology 22, 613–616.

    Google Scholar 

  50. Mitchell, J. F. B., Senior, C. A., and Ingram, W. J.: 1989, ‘CO2 and Climate: A Missing Feedback?’, Nature 341, 132–134.

    Google Scholar 

  51. Ramanathan, V. and Collins, W.: 1991, ‘Thermodynamic Regulation of Ocean Warming by Cirrus Clouds Deduced from Observations of the 1987 El Niño’, Nature 351, 27–32.

    Google Scholar 

  52. Ramanathan, V. and Collins, W.: 1993, ‘A Thermostat in the Tropics?’, Nature 361, 410–411.

    Google Scholar 

  53. Rampino, M. R. and Caldeira, K.: 1994, ‘The Goldilocks Problem: Climatic Evolution and Long-Term Habitability of the Terrestrial Planets’, Ann. Rev. Astron. Astrophys. 32, 83–114.

    Google Scholar 

  54. Raval, A., Oort, A. H., and Ramaswamy, V.: 1994, ‘Observed Dependence of Outgoing Longwave Radiation on Sea Surface Temperature and Moisture’, J. Clim. 7, 807–821.

    Google Scholar 

  55. Raval, A. and Ramanathan, V.: 1989, ‘Observational Determination of the Greenhouse Effect’, Nature 342, 758–762.

    Google Scholar 

  56. Raymo, M. E. and Rau, G. H.: ‘Mid-Pliocene Warmth: Stronger Greenhouse and Stronger Conveyor’, Science, (submitted).

  57. Rind, D., Chiou, E.-W., Chu, W., Larsen, J., Oltmans, S., Lerner, J., McCormick, M. P., and McMaster, L.: 1991, ‘Positive Water Vapor Feedback in Climate Models Confirmed by Satellite Data’, Nature 349, 500–503.

    Google Scholar 

  58. Rind, D. and Peteet, D.: 1985, ‘Terrestrial Conditions at the Last Glacial Maximum and CLIMAP Sea-Surface Temperature Estimates: Are They Consistent?’, Quat. Res. 24, 1–22.

    Google Scholar 

  59. Robock, A.: 1978, ‘Internally and Externally Caused Climate Change’, J. Atmos. Sci. 35, 1111–1122.

    Google Scholar 

  60. Sellwood, B. W., Price, G. D., and Valdes, P. J.: 1994, ‘Cooler Estimates of Cretaceous Temperatures’, Nature 370, 453–455.

    Google Scholar 

  61. Shackleton, N. J. and Boersma, A.: 1981, ‘The Climate of the Eocene Ocean’, Geol. Soc. London J. 138, 153–157.

    Google Scholar 

  62. Shine, K. P., Derwent, R. G., Wuebbles, D. J., and Morcrette, J.-J.: 1990, ‘Radiative Forcing of Climate’, in Houghton, J. T., Jenkins, G. J., and Ephraims, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, New York, pp. 41–68.

    Google Scholar 

  63. Sloan, L. Cirbus: 1994, ‘Equable Climates During the Early Eocene: Significance of Regional Paleogeography for North American Climate’, Geology 22, 881–884.

    Google Scholar 

  64. Sloan, L. Cirbus and Barron, E. J.: 1992, ‘Eocene Climate Model Results: Quantitative Comparison to Paleoclimatic Evidence’, Palaeogeog., Palaeoclim., Palaeoecol. 93, 183–202.

    Google Scholar 

  65. Sloan, L. Cirbus and Rea, D. K.: 1995, ‘Atmospheric CO2 of the Early Eocene: A General Circulation Modeling Sensitivity Study’, Glob. Plan. Change, (in press).

  66. Sloan, L. Cirbus, Walker, J. C. G., and Moore, T. C. Jr.: 1995, ‘The Role of Oceanic Heat Transport in Early Eocene Climate’, Paleoceanogr. 10, 347–356.

    Google Scholar 

  67. Sloan, L. Cirbus, Walker, J. C. G., Moore, T. C. Jr., Rea, D. K., and Zachos, J. C.: 1992, ‘Possible Methane-Induced Polar Warming in the Early Eocene’, Nature 357, 320–322.

    Google Scholar 

  68. Sun, D.-Z. and Lindzen, R. S.: 1993, ‘Distribution of Tropical Tropospheric Water Vapor’, J. Atmos. Sci. 50, 1644–1659.

    Google Scholar 

  69. Walker, J. C. G. and Sloan, L. Cirbus: 1992, ‘Something is Wrong with Climate Theory’, Geotimes 37, 16–18.

    Google Scholar 

  70. Warren, S. G. and Schneider, S. H.: 1979, ‘Seasonal Simulation as a Test for Uncertainties in the Parameterizations of a Budyko-Sellers Zonal Climate Model’, J. Atmos. Sci. 36, 1377–1391.

    Google Scholar 

  71. Webb III, T., Crowley, T. J., Frenzel, B., Gliemeroth, A.-K., Jouzel, J., Labeyrie, L., Prentice, I. C., Rind, D., Ruddiman, W. F., Sarnthein, M., and Zwick, A.: 1993, ‘Group Report: Use of Paleoclimatic Data as Analogs for Understanding Future Global Changes’, in Global Changes in the Perspective of the Past, John Wiley & Sons, Chichester, England, pp. 50–71.

    Google Scholar 

  72. Wigley, T. M. L. and Schlesinger, M. E.: 1985, ‘Analytical Solution for the Effect of Increasing CO2 on Global Mean Temperature’, Nature 315, 649–652.

    Google Scholar 

  73. Wolfe, J.: 1985, ‘Distribution of Major Vegetational Types During the Tertiary’, inSundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present, Geophys. Monogr. 32, Am. Geophys. Union, Washington, D.C., pp. 357–375.

    Google Scholar 

  74. Zachos, J. C., Stott, L. D., and Lohmann, K. C.: 1994, ‘Evolution of Early Cenozoic Marine Temperatures’, Paleoceanog. 9, 353–387.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

The U.S. Government right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Covey, C., Sloan, L.C. & Hoffert, M.I. Paleoclimate data constraints on climate sensitivity: The paleocalibration method. Climatic Change 32, 165–184 (1996). https://doi.org/10.1007/BF00143708

Download citation

Keywords

  • Cretaceous
  • Global Warming
  • Eocene
  • General Circulation Model
  • Error Bound