Skip to main content
Log in

Some problems of protein chemistry of the eye

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Summary

Proteins are substances on which the organic composition and structure of the cell depends. The protein concentration of the crystallin lens is higher than that of any other organ of the body. This predominance of proteins in the lens' substance points clearly towards the cardinal role they play in the metabolism of this organ. The present review is concerned with the problem of protein chemistry of the lens and mainly with the determination of the amino acid composition of the lenticular proteins. Such determinations were made on the undivided total proteins or on the isolated individual proteins.

The lens' substance consists partly of an insoluble albuminoid and partly of two water-soluble proteins called α- and β- crystallins. Besides, there is a small amount of albumin. The quantitative presence of nucleprotein was also demonstrated. This latter substance seems to occur in the lens mainly in the form of ribonucleic acid, suggesting a significant protein metabolism. The soluble fractions of the lens' proteins are diminishing with advancing age while the insoluble fraction is increasing: a phenomenon which might explain the loss of plasticity of the lens in higher age.

The amino acid composition of both the total undivided proteins and the divided individual proteins of the crystallin lens was estimated by a few investigators. The data obtained are tabulated and compared. A close harmony of the results of recent investigators evidences the reliability of the results obtained. Thus, the protein chemistry of the lens, though still in its early stage, can already be considered as a valuable approach to biochemical problems of this organ. There can hardly be any doubt that the crystallin lens has a considerable protein metabolism. Diets deficient in protein or in an essential amino acid lead to cataract formation. The method of delayed supplementation of an essential amino acid demonstrated that cataract formation is exclusively the result of disturbed protein synthesis, evidencing this primary “protein function” of amino acids. An “extra protein function”, such as formation of vitamins, co-enzymes, hormones or other unknown substances, was not as yet demonstrated in the lens. The experimental production of nutritional (protein and amino acid deficiency) cataracts suggests the possibility that in the formation of human senile cataracts, nutritional irrationalities play an important role. Faulty consideration of the age, just as in infants, may lead to forms of malnutrition, which in the long run contribute to the development of cataract.

The proteins of the cornea and sclera have been similarly analyzed, their amino acid composition determined, and the results comparatively tabulated.

Résumé

La concentration en protides est plus élevée dans le cristallin que dans n'importe quel autre organe. Ce fait permet de supposer que les protides jouent un rôle de premier plan dans le métabolisme de la lentille.

Dans cette revue d'ensemble il est question de la chimie des protides du cristallin et surtout de la détermination de leurs acides aminés. Ceux-ci ont été analysés en partant du cristallin entier ou des diverses fractions protidiques. Les résultats obtenus par les différents auteurs sont réunis et comparés. On peut conclure à une bonne concordance des chiffres publiés par les chercheurs modernes.

Il n'est pas douteux que la lentille possède un métabolisme protidique considérable. Des régimes carencés en protides ou en un acide aminé essentiel donnent lieu à la formation de cataractes. Celles-ci sont sûrement la conséquence d'un trouble de la synthèse protidique. Il n'est pas impossible que certains régimes, mal appropriés à l'âge du malade et prolongés pendant des années, jouent un rôle dans le développement de la cataracte sénile humaine.

Finalement, les protides de la cornée et de la sclérotique sont également passés en revue et les résultats des examens chimiques portant sur les acides aminés sont juxtaposés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BELLOWS, J. G. (1944) Cataract and Anomalies of the Lens. St. Louis: Mosby.

    Google Scholar 

  • BERG, J. L., FUND, E. R., SYDENSTRICKER, V. P., HALL, W. K., BOWLES, L. L. & HOCK, C. W. (1947) The Formation of Capillaries and other Tissue Changes in the Cornea of the Methionnine-deficient Rat. J. Nutrit. 33, 271–287.

    CAS  PubMed  Google Scholar 

  • BESSEY, O. A. & WOLBACH, S. B. (1939) Vascularization of the Cornea of the Rat in Riboflavin Deficiency with a Note on corneal Vascularization in Vitamin A Deficiency. J. exp. Med. 69, 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BERZELIUS, J. J. (1830) Larobok i kerien. Stockholm: Nordstedt.

    Google Scholar 

  • BLOCH, R. & SALIT, P. W. (1945) A Note on the Amino Acids of cataractous and sclerosed human Lenses. Arch. Biochem. 10, 277–281.

    Google Scholar 

  • BORSOOK, H. (1950) Protein Turnover and Incorporation of Labeled Amino Acids Into Tissue Proteins in vivo and in vitro. Physiol. Rev. 30, 206–219.

    CAS  PubMed  Google Scholar 

  • BOWLES, L. L. (1947) Vascularization of the Cornea of the Rat resulting from Deficiencies of B Vitamins. Anat. Rec. 97, 381–382.

    CAS  PubMed  Google Scholar 

  • BOWLES, L. L., ALLEN, L., SYDENSTRICKER, V. P., HOCK, C. W. & HALL, W. K. (1946) The Development and Demonstration of corneal Vascularization in Rats deficient in Vitamin A and in Riboflavin. J. Nutrit. 32, 19–32.

    CAS  PubMed  Google Scholar 

  • BOWLES, L. L., HALL, W. K., SYDENSTRICKER, V. P. & HOCK, C. W. (1949) Changes in the Rat with Deficiencies of pantothenic Acid and Pyridoxine. J. Nutrit. 37, 9–20.

    CAS  PubMed  Google Scholar 

  • BÜRGER, M. & SCHLOMKA, G. (1928) Beiträge zur physiologischen Chemie des Alterns der Gewebe. II. Untersuchungen an der Rinderlinse. Z. ges. exp. Med. 58, 710–724.

    Article  Google Scholar 

  • BUSCHKE, W. (1943) Classification of experimental Cataracts in the Rat: recent Observations on Cataract associated with Tryptophane deficiency and with some other experimental Conditions. Arch. Ophthal. 30, 735–750.

    Article  CAS  Google Scholar 

  • BUSCHKE, W., ALBANESE, A. A. & FOLLIS, R. H. (1942) Pathologic Changes in Tryptophane Deficiency. Fed. Proc 1, 175–177.

    Google Scholar 

  • CAHILL, W. M. & KOTALIK, G. C. (1943) Some Observations on Abrine. J. Nutrit. 26, 471–482.

    CAS  Google Scholar 

  • CARTWRIGHT, G. E., WINTROBE, M. M., BUSCHKE, W., FOLLIS, R. H., SUKSTA, A. & HUMPHREYS, S. (1945) Comparison with Pyridoxine-Deficiency Anemia. J. clin. Invest. 24, 268–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CURTIS, P. B., HAUGE, S. M. & KRAYBILL, H. R. (1932) The nutritive Value of certain animal Protein Concentrates. J. Nutrit. 5. 503–517.

    CAS  Google Scholar 

  • DAVIDSON, J. N. (1947) The Distribution of nucleic Acids in Tissues. In: Nucleic Acid. Symposia Soc. F. Exper. Biology vol. 1, p.p. 77–85. Cambridge: University Press.

    Google Scholar 

  • DUNN, M. S. (1949) Determination of Amino Acids by microbiological Assay. Physiol. Rev. 29, 219–259.

    CAS  PubMed  Google Scholar 

  • FERRARO, A. & ROIZIN, L. L. (1946) Ocular Changes in Rats on Amino Acid (Tryptophane) Deficiency Diets. Amer. J. Ophthal. 29, 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  • FERRARO, A. & ROIZIN, L. L. (1947) Ocular Changes in Rats on Amino Acid (Valine) Deficiency Diets. Amer. J. Ophthal. 30, 330–331.

    CAS  PubMed  Google Scholar 

  • FLORKIN, M. (1949) Biochemical Evolution. New York: Acad. Press.

    Google Scholar 

  • GEIGER, E. (1947 a) Physiology of the Utilization of dietary Amino Acid Mixtures. Los Angeles: Dissertation, University of Southern California.

    Google Scholar 

  • — (1947 b) Experiments with Delayed Supplementation of incomplete Amino Acid Mixtures. J. Nutrit. 34, 97–112.

    CAS  PubMed  Google Scholar 

  • — (1950) The Role of the Time Factor in Protein Synthesis. Science. 111, 594–599.

    Article  CAS  PubMed  Google Scholar 

  • GOLDSCHMIDT, M. (1917) Beiträge zur Physiologie und Pathologie der Krystalllinse. Graefes Arch. Ophthal. 93, 447–474.

    Article  Google Scholar 

  • — (1924) Über physiologisch-chemische Altersveränderungen des Auges. Ber. dtsch. ophthal. Ges. 44 137–139.

    Google Scholar 

  • HALL, W. K., BOWLES, L. L., SYDENSTRICKER, V. P. & SCHMIDT, H. L. (1948) Cataracts due to Deficiencies of Phenylalanine and of Histidine in the Rat: A Comparison with other Types of Cataracts. J. Nutrit. 36, 277–295.

    CAS  PubMed  Google Scholar 

  • HALL, W. K. & SYDENSTRICKER, V. P. (1947) The Production of Methionine Deficiency in the Rat with low Casein Diets. Arch. Biochem. 12, 147–152.

    CAS  PubMed  Google Scholar 

  • HALL, W. K., SYDENSTRICKER, V. P., HOCK, C. W. & BOWLES, L. L. (1946) Protein Deprivation as a Cause of Vascularization of the Cornea in the Rat. J. Nutrit. 32, 509–524.

    CAS  PubMed  Google Scholar 

  • HEKTOEN, L. (1921) The Specific Precipitine Reaction of the Lens. J. amer. med. Ass.77, 32–33.

    Article  CAS  Google Scholar 

  • — (1922) The Specific Precipitin Reaction of the normal and cataractous Lens. J. infect. Dis. 31, 72–78.

    Article  Google Scholar 

  • — (1923) Immune Reactions of the Lens. Amer. J. Ophthal. 6, 276–279.

    Article  Google Scholar 

  • HIJIKATA, Y. (1922) On the Cleavage Products of the Crystalline Lens. J. biol. Chem. 51, 155–164.

    CAS  Google Scholar 

  • JESS, A. (1912) Zur Chemie der Cataracta senilis. Arch. Augenheilk. 71, 259–266.

    Google Scholar 

  • — (1913) On the Chemistry of senile Cataract. Arch. Ophthal. 42, 45–50.

    Google Scholar 

  • — (1921) Die moderne Eiweisschemie im Dienste der Starforschung. I. Graefes Arch. Ophthal. 105, 428–455.

    Article  Google Scholar 

  • — (1922 a) Die moderne Eiweisschemie im Dienste der Starforschung. II. Graefes Arch. Ophthal. 109, 463–478.

    Article  CAS  Google Scholar 

  • — (1922 b) Der Gehalt der Linsenproteine an Histidin, Arginin und Lysin. Hoppe-Seyl. Z. 122, 160–165.

    Article  CAS  Google Scholar 

  • — (1923 a) Über Bausteine des Linseneiweisses. Ber. dtsch. ophthal. Ges. 42, 224–230.

    Google Scholar 

  • — (1923 b) Zur vergleichenden Chemie der Hornhaut und der Lederhaut des Auges. Graefes Arch. Ophth. 112, 489–494.

    Article  CAS  Google Scholar 

  • KRAUSE, A. C. (l932 a) The chemical Constitution of the Cornea. Amer. J. Ophthal. 15, 422–424.

    Article  Google Scholar 

  • — (1932 b) The chemical Constitution of the Sciera. Arch. Ophthal. 7, 598–600.

    Article  CAS  Google Scholar 

  • — (1932 c) Chemistry of the Lens. I. Composition of Albuminoid and Alpha Crystallin. Arch. Ophthal. 8, 166–172.

    Article  CAS  Google Scholar 

  • — (1933 a) Chemistry of the Lens. II. Composition of Beta Crystallin, Albumin (Gamma Crystallin) and Capsule. Arch. Ophthal. 9, 617–624.

    Article  CAS  Google Scholar 

  • — (1933 b) Chemistry of the Lens. III. Autolysis of the lenticular Proteins. Arch. Ophthal. 10, 631–639.

    Article  CAS  Google Scholar 

  • — (1933 c) The Chemistry of the Sclera. Amer. J. Ophthal. 7, 598–600.

    Google Scholar 

  • — (1933 d) Die chemische Zusammensetzung der Eiweisse in der Hornhaut. Arch. Augenheilk. 107, 453–456.

    CAS  Google Scholar 

  • — (1933 e) Chemistry of the Lens. V. Relation of the anatomic Distribution of the lenticular Proteins to their chemical Composition. Arch. Ophthal. 10, 788–792.

    Article  CAS  Google Scholar 

  • — (1934 a) Chemistry of the Lens. IV. The Nature of the lenticular Proteins. Amer. J. Ophthal. 17, 502–514.

    Article  CAS  Google Scholar 

  • — (1934 b) The Biochemistry of the Eye. Baltimore: The Johns Hopkins Press.

    Google Scholar 

  • KÜHNE, W. (1864) Lehrbuch der physiologischen Chemie. Leipzig: Engelmann.

    Google Scholar 

  • KIRBY, D. B. & WIENER, R. E. (1932) A Study of the Relation of Disturbances of Carbohydrate Metabolism to Cataract. Trans. amer. Acad. Ophthal. Otolaryngol. 37, 196–212.

    Google Scholar 

  • LAPTSCHINSKY, M. (1876) Ein Beitrag zur Chemie des Linsengewebes. Pflüg. Arch. ges. Physiol. 13, 631–634.

    Article  Google Scholar 

  • MANDEL, P., NORDMANN, J. & ZIMMER, J. (1949) Acide Nucléique du Cristallin. C.R. Acad. Sci. 228, 516–517.

    CAS  Google Scholar 

  • MANDEL, P., NORDMANN, J., ZIMMER, J. & HARTH, S. (1949) A Phosphoprotein in the Lens of the Eye. Nature, (Lond.) 164, 797.

    Article  Google Scholar 

  • MAUN, M. E., CAHILL, W. M. & DAVIS, R. M. (1945 a) Morphologic Studies of the Rats deprived of essential Amino Acids: I. Phenylalanine. Arch. Path. Lab. Med. 39, 294–300.

    CAS  Google Scholar 

  • MAUN, M. E., CAHILL, W. M. & DAVIS, R. M. (1945 b) Morphologic Studies of the Rats deprived of essential Amino Acids. II. Leucine. Arch. Path. Lab. Med. 40, 172–178.

    Google Scholar 

  • MAUN, M. E., CAHILL, W. M. & DAVIS, R. M. (1946) Morphologic Studies of the Rats deprived of essential Amino Acids. III. Histidine. Arch. Path. Lab. Med. 41, 25–31.

    CAS  Google Scholar 

  • MÖRNER, C. T. (1894 a) Untersuchungen der Proteinsubstanzen in den lichtbrechenden Medien des Auges. I. Hoppe-Seyl. Z. 18, 61–106.

    Google Scholar 

  • — (1894 b) Untersuchungen der Proteinsubstanzen in den lichtbrechenden Medien des Auges. II. Hoppe-Seyl. Z. 18, 213–222.

    Google Scholar 

  • — (1894 c) Untersuchungen der Proteinsubstanzen in den lichtbrechenden Medien des Auges. III. Hoppe-Seyl Z. 18, 233–256.

    Google Scholar 

  • MÜLLER, J. (1836) Über die Structur und die chemischen Eigenschaften der thierischen Bestandtheile der Knorpel und Knochen. Ann. Phys. Chem. (Leipzig) 38, 295–324.

    Article  Google Scholar 

  • NORDMANN, J. (1949) Le Durcissement du Cristallin. Opthatmologica 118, 369–377.

    Article  CAS  Google Scholar 

  • PATCH, E. M. (1934) Cataracts as a Result of dietary Deficiency in larval Amblyostoma Tigrinum. Science, 79, 57–58.

    Article  CAS  PubMed  Google Scholar 

  • — (1941) Dietary Production of Cataracts in Larvae of Amblyostoma Tigrinum. J. Nutrit. 22, 365–381.

    CAS  Google Scholar 

  • — (1943) Relation of Diet to lenticular Changes in Larvae of Amblyostoma Tigrinum. Arch. Ophthal. 29, 69–84.

    Article  Google Scholar 

  • REZENDE, C. & de MOURA CAMPOS, F. A. (1942) Cataracts in Rats fed a low Protein Diet. Arch. Ophthal. 28, 1038–1041.

    Article  CAS  Google Scholar 

  • SALIT, P. (1931) Biochemical Investigation of the Nitrogen, Weight and Water Content of crystallin Lenses. Arch. Ophthal. 5, 623–633.

    Article  Google Scholar 

  • SCHAEFFER, A. J. (1938) Le Vitamine nei loro Rapporti con l'Oftalmologia. I. Le Vitamine Liposolubili. Docum. ophthal. 1, 271–409.

    Google Scholar 

  • — (1950) Some Aspects of Ophthalmo-Pharmacology. I. Fundamental Principles. Docum. ophthal. 4, 227–319.

    Article  CAS  PubMed  Google Scholar 

  • SCHAEFFER, A. J. & GEIGER, E. (1947) Cataract Development in Animals with delayed Supplementation of Tryptophane. Proc. Soc. exper. Biol., (N.Y.) 66, 309–311.

    Article  CAS  Google Scholar 

  • SCHAEFFER, A. J. & MURRAY, J. D. (1950 a) Tryptophane Determination in Cataracts due to Deficiency or delayed Supplementation of Tryptophane. Arch. Ophthal. 43, 202–216.

    Article  CAS  PubMed  Google Scholar 

  • SCHAEFFER, A. J. & MURRAY, J. D. (1950b) Amino Acid Composition of the Lens Proteins of the bovine Eye. Arch. Ophthal. 43, 1056–1064.

    Article  CAS  PubMed  Google Scholar 

  • SCHAEFFER, A. J. & MURRAY, J. D. (1950 c) Amino Acid Composition of the Tissue Proteins of the Cornea, Sclera, Vitreous and Retina of the bovine Eye. Arch. Ophthal. 44, 833–841.

    Article  CAS  Google Scholar 

  • SCHAEFFER, A. J. & SHANKMAN, S. (1950) Amino Acid Composition of the ocular Tissues. Amer. J. Ophthal. 33, 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  • SCHÖNHEIMER, R. (1942) The dynamic State of the Body Constituents. Cambridge: Harvard University Press.

    Google Scholar 

  • SHROPSHIRE, R. F. (1937 a) Fish Lens Protein and Cataract: I. Therapeutic Use. Arch. Ophthal. 17, 505–507.

    Article  Google Scholar 

  • — (1937 b) Fish Lens Protein and Cataract: II. Chemical Studies. Arch. Ophthal. 17, 508–512.

    Article  Google Scholar 

  • SIMON, J. M. (1840) Handbuch der angewandten medizinischen Chemie. Berlin: Fortsnor.

    Google Scholar 

  • SYDENSTRICKER, V. P., HALL, W. K., BOWLES, L. L. & SCHMIDT, H. L. (1947) The Corneal Vascularization resulting from Deficiencies of Amino Acids in the Rat. J. Nutrit. 34, 481–490.

    CAS  PubMed  Google Scholar 

  • SYDENSTRICKER, V. P., HALL, W. K., HOCK, C. W. & PUND, E. R. (1946) Amino Acid and Protein Deficiencies as Causes of corneal Vascularization: A Preliminary Report. Science 103, 194–196.

    Article  CAS  Google Scholar 

  • SYDENSTRICKER, V. P., SCHMIDT, H. L. & HALL, W. K. (1947) The corneal and lenticular Changes resulting from Amino Acid Deficiencies in the Rat. Proc. Soc. exp. Biol. (N.Y.) 64, 59–61.

    Article  CAS  Google Scholar 

  • TOTTER, J. R. & DAY, P. L. (1942) Cataract and other ocular Changes resulting from Tryptophane Deficiency. J. Nutrit. 24, 159–165.

    CAS  Google Scholar 

  • TRISTRAM, G. R. (1949) Amino Acid Composition of Purified Proteins. In Advances in Protein Chemistry, vol. 5. New York: Academic Press.

    Google Scholar 

  • TSUJI, T. (1932) Experimentelle Untersuchungen des Linseneiweisses bei Katarakt. J. Biochem. (Tokyo) 15, 33–64.

    CAS  Google Scholar 

  • WOODS, A. C. & BURKY, E. L. (1927) Lens Protein and its Fractions: Preparation and immunologic and chemical Properties. J. amer. med. Ass.89, 102–109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

4041 Wilshire Boulevard (5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, A.J. Some problems of protein chemistry of the eye. Doc Ophthalmol 5, 403–451 (1951). https://doi.org/10.1007/BF00143666

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143666

Keywords

Navigation