Skip to main content
Log in

Optimum design of a series of continuous stirred tank reactors containing immobilised growing cells

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The optimum design of a series of continuously operated stirred-tank reactors containing immobilised growing cells is described. Optimal design is defined as the minimal total holding time over the reactor series to achieve a certain degree of conversion. The analysis is made under the assumptions that there is a constant and equal concentration of immobilised biomass in all bioreactors along the series, no diffusion limitation takes place, all growth of the immobilised biomass will lead to an increase in suspended biomass, and that maintenance of the immobilised cells can be neglected. It is shown that the use of more than three bioreactors in series is likely to be de trop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeftink, H.H., R.T.J.M.van derHeijden, and J.J.Heijnen (1990). FEMS Microbiol.Ecol. 73: 203–210.

    Google Scholar 

  • De Gooijer, C.D., W.A.M. Bakker, H.H. Beeftink, and J. Tramper (1996). Enz.Microb.Technol., accepted for publication.

  • DeGooijer, C.D., H.J.H.Hens, and J.Tramper (1989) Bioproc.Eng. 4: 153–158.

    Google Scholar 

  • DeGooijer, C.D., R.H.Wijffels, and J.Tramper (1991). Biotechnol.Bioeng. 38: 224–231.

    Google Scholar 

  • Godia, F., C.Casas, and C.Sola (1987). Proc.Biochem. 4: 43–48.

    Google Scholar 

  • Herbert, D. (1959). In: Recent Progress in Microbiology. (G. Tunevall, ed.), pp. 381–396. Almqvist & Wiksell, Stockholm, Sweden, 1959

    Google Scholar 

  • Hill, G.A., and C.W.Robinson (1989). Can.J.Chem.Eng. 67: 818–824.

    Google Scholar 

  • Levenspiel, O. (1972). Chemical Reaction Engineering. John Wiley & Sons, New York.

    Google Scholar 

  • Levenspiel, O. (1979). The Chemical Reactor Omnibook. OSU, Corvallis.

    Google Scholar 

  • Lopes, T.I., and F.X.Malcata (1993). J.Chem.Eng.Jpn. 26: 94–98.

    Google Scholar 

  • Luyben, K.Ch.A.M., and J.Tramper (1982). Biotechnol.Bioeng. 24: 1217–1220.

    Google Scholar 

  • Malcata, F.X. (1988). Can.J.Chem.Eng. 66: 168–172.

    Google Scholar 

  • Malcata, F.X. (1989). Biotechnol.Bioeng. 33: 251–255.

    Google Scholar 

  • Malcata, F.X., and D.C.Cameron (1992). Biocatalysis 5: 233–248.

    Google Scholar 

  • Monbouquette, H.G., G.D.Sayles, and D.F.Ollis (1990). Biotechnol.Bioeng. 35: 609–629.

    Google Scholar 

  • Moser, A. (1985). In: Biotechnology: a Comprehensive Treatise, vol. 2: Fundamentals of Biochemical Engineering (H.J. Rehm, G. Reed, and H. Brauer, eds.), pp. 173–308. VCH, Weinheim, Germany.

    Google Scholar 

  • Nakasaki, K., T.Murai, and T.Akiyama (1989). Biotechnol.Bioeng. 33: 1317–1323.

    Google Scholar 

  • Pirt, S.J. (1963). Proc.Roy.Soc.London 163B: 224–231.

    Google Scholar 

  • Press, W.H., B.P.Flannery, S.A.Teukolsky, and W.T.Vetterling (1986). Numerical Recipes - the Art of Scientific Computing. Cambridge University Press, New York, USA.

    Google Scholar 

  • Schügerl, K. (1982). Adv.Biochem.Eng. 22: 93–224.

    Google Scholar 

  • Shama, G. (1988). Proc.Biochem. 10: 138–145.

    Google Scholar 

  • Shimizu, K. and M.Matsubara (1987). Chem.Eng.Comm. 52: 61–74.

    Google Scholar 

  • Venkatasubramanian, K., S.B.Karkare, and W.R.Vieth (1983). Appl.Biochem.Bioeng. 4: 311–349.

    Google Scholar 

  • Wijffels, R.H., C.D.deGooijer, S.Kortekaas, and J.Tramper (1991). Biotechnol.Bioeng. 38: 232–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gooijer, C.D., Beeftink, H.H. & Tramper, J. Optimum design of a series of continuous stirred tank reactors containing immobilised growing cells. Biotechnol Lett 18, 397–402 (1996). https://doi.org/10.1007/BF00143459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143459

Keywords

Navigation