Skip to main content
Log in

Condorcet's paradox

  • Published:
Theory and Decision Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abrams, R.: 1976, ‘The Voter's Paradox and the Homogeneity of Individual Preference Orders’, Public Choice 26, 19–27.

    Google Scholar 

  • Arrow, K. J.: 1963, Social Choice and Individual Values (2nd edn), Wiley, New York.

    Google Scholar 

  • Bacon, R. H.: 1963, ‘Approximations to Multivariate Normal Orthant Probabilities’, Annals of Mathematical Statistics 34, 191–198.

    Google Scholar 

  • Beck, N.: 1975, ‘A Note on the Probability of a Tied Election’, Public Choice 23, 75–79.

    Google Scholar 

  • Bell, C. E.: 1978, ‘What Happens When Majority Rule Breaks Down’, Public Choice 33, 121–126.

    Google Scholar 

  • Bell, C. E.: 1981, ‘A Random Graph Almost Surely Has a Hamiltonian Cycle When the Number of Alternatives is Large’, Econometrica.

  • Bernholz, O.: 1973, ‘Logrolling, Arrow Paradox, and Cyclical Majorities’, Public Choice 15, 87–95.

    Google Scholar 

  • Bernholz, P.: 1974, ‘Logrolling, Arrow Paradox, and Decision Rules — A Generalization’, Kyklos 27, 49–62.

    Google Scholar 

  • Black, D.: 1948a, ‘On the Rationale of Group Decision Making’, Journal of Political Economy 56, 23–43.

    Google Scholar 

  • Black, D.: 1948b, ‘Un Approcio Alla Teoria Delle Decisioni di Comitato’, Giornale Delgi Economisti e Annali di Economica 7 (new series), 262–284.

    Google Scholar 

  • Black, D.: 1948c, ‘The Decisions of a Committee Using a Special Majority’, Econometrica 16, 245–261.

    Google Scholar 

  • Black, D.: 1948d, ‘The Elasticity of Committee Decisions with an Altering Size of Majority’, Econometrica 16, 262–270.

    Google Scholar 

  • Black, D.: 1949a, ‘The Elasticity of Committee Decisions with Alterations in the Members' Preference Structures’, South African Journal of Economics 17, 88–102.

    Google Scholar 

  • Black, D.: 1949b, ‘The Theory of Elections in Single-Member Constituences’, Canadian Journal of Economics and Political Science 15, 158–175.

    Google Scholar 

  • Black, D.: 1949c, ‘Some Theoretical Schemes of Proportional Representation’, Canadian Journal of Economics and Political Science 15, 334–343.

    Google Scholar 

  • Black, D.: 1958, The Theory of Committees and Elections, Cambridge University Press, Cambridge.

    Google Scholar 

  • Blin, J. M.: 1973, ‘Intransitive Social Orderings and the Probability of the Condorcet Effect’, Kyklos 26, 25–35.

    Google Scholar 

  • Blydenburgh, J. C.: 1971, ‘The Closed Rule and the Paradox of Voting’, Journal of Politics 33, 57–71.

    Google Scholar 

  • Bowen, B. D.: 1972, ‘Toward an Estimate of the Frequency of Occurrence of the Paradox of Voting in U.S. Senate Roll Call Votes’, in Biemi and Weisberg, (eds.), Probability Models of Collective Decision Making, Charles E. Merrill, Columbus, Ohio, pp. 181–203.

    Google Scholar 

  • Buckley, J. J.: 1975, ‘A Note on Unconditional Probabilities and the Voter's Paradox’, Public Choice 24, 111–114.

    Google Scholar 

  • Buckley, J. J. and Westen, T. E.: 1979, ‘The Probability of the Voter's Paradox for an Even Number of Voters’, Journal of Interdisciplinary Modeling and Simulation 2, 185–210.

    Google Scholar 

  • Campbell, C. D. and Tullock, G.: 1965, ‘A Measure of the Importance of Cyclical Majorities’, Economic Journal 7, 853–857.

    Google Scholar 

  • Campbell, C. D. and Tullock, G.: 1966, ‘The Paradox of Voting - A Possible Method of Calculation’, American Political Science Review 60, 684–685.

    Google Scholar 

  • Chamberlain, G. and Rothschild, M.: 1981, ‘A Note on the Probability of Casting a Decisive Vote’, Journal of Economic Theory, in press.

  • Chamberlin, J. R. and Cohen, M. D.: 1978, ‘Towards Applicable Social Choice Theory: A Comparison of Social Choice Functions Under Spatial Model Assumptions’, American Political Science Review 72, 1341–1356.

    Google Scholar 

  • Condorcet, Marquis de: 1785, Essai sur l'application de l'analyse a la probilite des decisions rendues a la pluralite dex voix, Paris, 1785 (reprinted in 1973 by Chelsea Press, New York).

  • Craven, J.: 1971, ‘Majority Voting and Social Choice’, Review of Economic Studies 38, 265–267.

    Google Scholar 

  • DeMeyer, F. and Plott, C. R.: 1970, ‘The Probability of a Cyclical Majority’, Econometrica 38, 345–354.

    Google Scholar 

  • Dobra, J. and Tullock, G.: 1981, ‘An Approach to Empirical Measures of Voting Paradoxes’, Public Choice 36, 193–194.

    Google Scholar 

  • Downs, A.: 1961, ‘In Defense of Majority Voting’, Journal of Political Economy 69, 192–199.

    Google Scholar 

  • Fishburn, P. C.: 1973a, The Theory of Social Choice, Princeton University Press.

  • Fishburn, P. C.: 1973b, ‘A Proof of May's Theorem P(m, 4) = 2P(m, 3)’, Behavioral Science 18, 212.

    Google Scholar 

  • Fishburn, P. C.: 1973c, ‘Voter Concordance, Simple Majorities and Group Decision Methods’, Behavioral Science 18, 364–376.

    Google Scholar 

  • Fishburn, P. C.: 1974, ‘Paradoxes of Voting’, American Political Science Review 68, 537–546.

    Google Scholar 

  • Fishburn, P. C.: 1976, ‘Acceptable Social Choice Lotteries’, Prepared for the International Symposium on Decision Theory and Social Ethics, held in Bavaria.

  • Fishburn, P. C. and Gehrlein, W. V.: 1980a, ‘Social Homogeneity and Condorcet's Paradox’, Public Choice 35, 403–420.

    Google Scholar 

  • Fishburn, P. C. and Gehrlein, W. V.: 1980b, ‘The Paradox of Voting: Effects of Individual Indifference and Intransitivity’, Journal of Public Economics 14, 83–94.

    Google Scholar 

  • Fishburn, P. C., Gehrlein, W. V., and Maskin, E.: 1979a, ‘A Progress Report on Kelly's Majority Conjectures’, Economics Letters 2, 313–314.

    Google Scholar 

  • Fishburn, P. C., Gehrlein, W. V. and Maskin, E.: 1979b, ‘Condorcet Proportions and Kelly's Conjectures’, Discrete Applied Mathematics 1, 229–252.

    Google Scholar 

  • Garman, M. B. and Kamien, M. I.: 1968, ‘The Paradox of Voting: Probability Calculations’, Behavioral Science 13, 306–316.

    Google Scholar 

  • Gehrlein, W. V.: 1978, ‘Condorcet Winners in Dual Cultures’, Presented at National Meeting of the Public Choice Society.

  • Gehrlein, W. V.: 1979, ‘A Representation for Quadrivariate Normal Positive Orthant Probabilities’, Communications in Statistics - Simulation and Computation B8, 349–358.

    Google Scholar 

  • Gehrlein, W. V.: 1981a, ‘The Frequency of Condorcet's Paradox in Large Groups’, Proceedings of the Northeast American Institute for Decision Sciences, Washington, D.C., pp. 121–123.

  • Gehrlein, W. V.: 1981b, ‘The Expected Probability of Condorcet's Paradox’, Economics Letters, 7, 33–37.

    Google Scholar 

  • Gehrlein, W. V. and Bonwit, T.: 1981, ‘Juveniles' Preferences for Television Watching and Other Activities’, Proceedings of the Southeast American Institute for Decision Sciences, Charlotte, NC, pp. 170–171.

  • Gehrlein, W. V.: 1981c, ‘Qualities of the Probability of a Condorcet Winner’, Proceedings of the Northeast American Institute for Decision Sciences, Boston, Massachusetts, pp. 133–135.

  • Gehrlein, W. V.: 1981d, ‘Single Stage Election Procedures for Large Electorates’, Journal of Mathematical Economics, 8, 263–275.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1976a, ‘Condorcet's Paradox and Anonymous Preference Profiles’, Public Choice 26, 1–18.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1976b, ‘The Probability of the Paradox of Voting: A Computable Solution’, Journal of Economic Theory 13, 14–25.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1978a, ‘Probabilities of Election Outcomes For Large Electorates’, Journal of Economic Theory 19, 38–49.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1978b, ‘The Effects of Abstentions on Election Outcomes’, Public Choice 33, 69–82.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1979a, ‘Proportions of Profiles With a Majority Candidate’, Computers and Mathematics with Applications 5, 117–124.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1979b, ‘Effects of Abstentions on Voting Procedure in Three-Candidate Elections’, Behavioral Science 24, 346–354.

    Google Scholar 

  • Gehrlein, W. V. and Fishburn, P. C.: 1981, ‘Scoring and Majority Agreements for Large Electorates with Arbitrary Preferences’, Mathematical Social Sciences, forthcoming.

  • Gillett, R.: 1977, ‘Collective Indecision’, Behavioral Science 22, 383–390.

    Google Scholar 

  • Gillett, R.: 1978, ‘A Recursion Relation For the Probability of the Paradox of Voting’, Journal of Economic Theory 18, 318–327.

    Google Scholar 

  • Gillett, R.: 1979, ‘Borda Indecision’, unpublished manuscript.

  • Gillett, R.: 1980a, ‘The Asymptotic Likelihood of Agreement Between Plurality and Condorcet Outcomes’, Behavioral Science 25, 23–32.

    Google Scholar 

  • Gillett, R.: 1980b, ‘The Comparative Likelihood of an Equivocal Outcome Under Plurality, Condorcet and Borda Voting Procedures’, Public Choice 35, 483–491.

    Google Scholar 

  • Granger, G. G.: 1956, La Mathematique Sociale de Marquis de Condorcet, Presses Universitaires de France, Paris.

    Google Scholar 

  • Guilbaud, G. T.: 1952, ‘Les Theories de L.interet general et le probleme logique de l'agregation’, Economie Appliquee 5, 501–584.

    Google Scholar 

  • Hansen, T. J. and Prince, B. L.: 1973, ‘The Paradox of Voting: An Elementary Solution for the Case of Three Alternatives’, Public Choice 15, 103–117.

    Google Scholar 

  • Huntingdon, E. V.: 1938, ‘A Paradox in the Scoring of Competing Teams’, Science 88, 287–288.

    Google Scholar 

  • Inada, K. I.: 1964, ‘A Note on the Simple Majority Decision Rule’, Econometrica 32, 525–531.

    Google Scholar 

  • Jamison, D. T.: 1975, ‘The Probability of Intransitive Majority Rule: An Empirical Study’, Public Choice 23, 87–94.

    Google Scholar 

  • Jamison, D. and Luce, E.: 1972, ‘Social Homogeneity and the Probability of Intransitive Majority Rule’, Journal of Economic Theory 5, 79–87.

    Google Scholar 

  • Johnson, N. L. and Kotz, S.: 1972, Distributions in Statistics: Continuous Multivariate Distributions, John Wiley, New York, 1972.

    Google Scholar 

  • Kelly, J. S.: 1974, ‘Voting Anomalies, The Number of Voters, and the Number of Alternatives’, Econometrica 42, 239–251.

    Google Scholar 

  • Kendall, M. G. and Stuart, A.: 1963, The Advanced Theory of Statistics, Griffin Publishing, London.

    Google Scholar 

  • Klahr, D.: 1966, ‘A Computer Simulation of the Paradox of Voting’, American Political Science Review 60, 284–390.

    Google Scholar 

  • Koehler, D.: 1975, ‘Vote Trading and the Voting Paradox: A Proof of Logical Equivalence’, American Political Science Review 69, 954–960.

    Google Scholar 

  • Kuga, K. and Nagatani, H.: 1974, ‘Voter Antagonism and The Paradox of Voting’, Econometrica 42, 1045–1067.

    Google Scholar 

  • Ludwin, W. G.: 1976, ‘Voting Methods: A Simulation’, Public Choice 25, 19–30.

    Google Scholar 

  • Margolis, H.: 1977, ‘Probability of a Tie Election’, Public Choice 31, 135–138.

    Google Scholar 

  • Marz, R. H., Casstevens, T. W., and Casstevens, H. T.: 1973, ‘The Hunting of the Paradox’, Public Choice 15, 97–102.

    Google Scholar 

  • May, R. M.: 1971, ‘Some Mathematical Remarks On the Paradox of Voting’, Behavioral Science 16, 143–151.

    Google Scholar 

  • National Bureau of Standards: 1959, ‘Tables of the Bivariate Normal Distribution Function and Related Functions’, Applied Mathematics Series 50, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Niemi, R. G.: 1970, ‘The Occurrence of the Paradox of Voting in University Elections’, Public Choice 8, 91–100.

    Google Scholar 

  • Niemi, R. G. and Riker, W. H.: 1976, ‘The Choice of Voting Systems’, Scientific American 234, 21–27.

    Google Scholar 

  • Niemi, R. G. and Weisberg, H. F.: ‘A Mathematical Solution for the Probability of the Paradox of Voting’, Behavioral Science 13, 317–323.

  • Paris, D. C.: 1975, ‘Plurality Distortion and Majority Rule’, Behavioral Science 20, 125–133.

    Google Scholar 

  • Pomeranz, J. E. and Weil, R. L.: 1970, ‘The Cyclical Majority Problem’, Communications of the ACM 13, 251–254.

    Google Scholar 

  • Riker, W. H.: 1961, ‘Voting and the Summation of Preferences: An Interpretive Bibliographical Review of Selected Developments During the Last Decade’, American Political Science Review 55, 900–911.

    Google Scholar 

  • Riker, W. H.: 1958, ‘The Paradox of Voting and Congressional Rules for Voting on Amendments’, American Political Science Review 52, 349–366.

    Google Scholar 

  • Rosenthal, R. W.: 1975, ‘Voting Majority Sizes’, Econometrica 43, 293–299.

    Google Scholar 

  • Ruben, H.: 1954, ‘On the Moments of Order Statistics in Samples from Normal Populations’, Biometrika 41, 200–227.

    Google Scholar 

  • Sen, A.: 1970, Collective Choice and Social Welfare, Holden-Day, San Francisco.

    Google Scholar 

  • Sevcik, K. E.: 1969, ‘Exact Probabilities of a Voter's Paradox Through Seven Issues and Seven Judges’, University of Chicago Institute for Computer Research Quarterly Report 22, Sec. III-B.

  • Srivastava, M. S. and Khatri, C. G.: 1979, An Introduction to Multivariate Statistics, North Holland Publishing, New York.

    Google Scholar 

  • Steck, G. P.: 1962, ‘Orthant Probabilities for the Equicorrelated Multivariate Normal Distribution’, Biometrika 49, 433–445.

    Google Scholar 

  • Sullivan, T.: 1976, ‘Voter's Paradox and Logrolling: An Initial Framework for Committee Behavior on Appropriations and Ways and Means’, Public Choice 25, 31–44.

    Google Scholar 

  • Tullock, G.: 1959, ‘Problems of Majority Voting’, Journal of Political Economy 67, 57–79.

    Google Scholar 

  • Tullock, G.: 1967, ‘The General Irrelevance of the General Impossibility Theorem’, Quarterly Journal of Economics 81, 256–270.

    Google Scholar 

  • Tullock, G. and Campbell, C. D.: 1979, ‘Computer Simulation of a Small Voting System’, Economic Journal 80, 97–104.

    Google Scholar 

  • Weisberg, H. F. and Niemi, R. G.: 1972, ‘Probability Calculations for Cyclical Majorities in Congressional Voting’, in Niemi and Weisberg, (eds.), Probability Models of Collective Decision Making, Charles E. Merrill, Columbus, Ohio, pp. 204–231.

    Google Scholar 

  • Weisberg, H. G. and Niemi, R. G.: 1973, ‘A Pairwise Probability Approach to the Likelihood of the Paradox of Voting’, Behavioral Science 18, 109–117.

    Google Scholar 

  • Williamson, O. E. and Sargent, T. J.: 1967, ‘Social Choice: A Probabilistic Approach’, Economic Journal 77, 797–813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the National Science Foundation to the University of Delaware.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrlein, W.V. Condorcet's paradox. Theor Decis 15, 161–197 (1983). https://doi.org/10.1007/BF00143070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143070

Navigation