Statistics and Computing

, Volume 6, Issue 3, pp 245–250 | Cite as

The role of embedded integration rules in Bayesian statistics

  • Ronald Cools
  • Petros Dellaportas
Papers

Abstract

Numerical approximations are often used to implement the Bayesian paradigm in analytically intractable parametric models. We focus on embedded integration rules which are an attractive numerical integration tool and present theoretical results which justify their use in a Bayesian integration strategy.

Keywords

Numerical integration embedded integration rules pareto model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cools, R. (1992) A survey of methods for constructing cubature formulae. In T. O. Espelid and A. Genz (eds) Numerical Integration—Recent Developments, Software and Applications, NATO ASI Series C, 357, 1–24, Kluwer, Dordrecht.Google Scholar
  2. Cools, R. and Haegemans, A. (1989) On the construction of multi-dimensional embedded cubature formulae. Numerische Mathematik, 55, 735–45.Google Scholar
  3. Cools, R. and Rabinowitz, P. (1993) Monomial Cubature Rules Since ‘Stroud’: A Compilation. Journal of Computational and Applied Mathematics, 48, 309–26.Google Scholar
  4. Dellaportas, P. (1990) Imbedded integration rules and their applications in Bayesian analysis. Unpublished PhD thesis, University of Plymouth, UK.Google Scholar
  5. Dellaportas, P. and Wright, D. E. (1991) Positive embedded integration in Bayesian analysis. Statistics and Computing, 1, 1–12.Google Scholar
  6. Dellaportas, P. and Wright, D. E. (1992) A numerical integration strategy in Bayesian analysis. In J. M. Bernado, A. Berger, P. Dawid and A. F. M. Smith (eds) Bayesian Statistics 4, pp. 601–606, Oxford University Press.Google Scholar
  7. Engels, H. (1980) Numerical quadrature and cubature. Academic Press, New York.Google Scholar
  8. Gelfand, A. E. and Smith, A. F. M. (1990) Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.Google Scholar
  9. Naylor, J. A. and Smith, A. F. M. (1982) Applications of a method for the efficient computation of posterior distributions. Applied Statistics, 31, 3, 214–25.Google Scholar
  10. Rabinowitz, P., Kautsky, J., Elhay, S. and Butcher, J. C. (1987) On sequences of imbedded integration rules. In P. Keast and G. Fairweather (eds) Numerical Integration—Recent Developments, Software and Applications, NATO ASI Series C, 230, 113–39, Reidel, Dordrecht.Google Scholar
  11. Shaw, J. E. H. (1987) Aspects of numerical integration and summarisation. In J. M. Bernado, M. H. DeGroot, D. V. Lindley and A. F. M. Smith (eds) Bayesian Statistics 3, pp. 411–28, Oxford University Press.Google Scholar
  12. Stroud, A. (1971) Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  13. Tierney, L. and Kadane, J. (1986) Accurate approximations for posterior moments and marginals, Journal of the American Statistical Association, 81, 82–6.Google Scholar
  14. Turnbull, B. W., Brown, B. W. Jr and Hu, M. (1974) Survivorship analysis of heart transplant data. Journal of the American Statistical Association, 69, 74–80.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Ronald Cools
    • 1
  • Petros Dellaportas
    • 2
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Department of StatisticsAthens University of EconomicsAthensGreece

Personalised recommendations