Climatic Change

, Volume 33, Issue 1, pp 31–62 | Cite as

Accounting for the missing carbon-sink with the CO2-fertilization effect

  • Haroon S. Kheshgi
  • Atul K. Jain
  • Donald J. Wuebbles
Article

Abstract

A terrestrial-biosphere carbon-sink has been included in global carbon-cycle models in order to reproduce past atmospheric CO2, 13C and 14C concentrations. The sink is of large enough magnitude that its effect on projections of future CO2 levels should not be ignored. However, the cause and mechanism of this sink are not well understood, contributing to uncertainty of projections. The estimated magnitude of the biospheric sink is examined with the aid of a global carbon-cycle model. For CO2 emissions scenarios, model estimates are made of the resulting atmospheric CO2 concentration. Next, the response of this model to CO2-emission impulses is broken down to give the fractions of the impulse which reside in the atmosphere, oceans, and terrestrial biosphere - all as a perturbation to background atmospheric CO2 concentration time-profiles that correspond to different emission scenarios. For a biospheric sink driven by the CO2-fertilization effect, we find that the biospheric fraction reaches a maximum of roughly 30% about 50 years after the impulse, which is of the same size as the oceanic fraction at that time. The dependence of these results on emission scenario and the year of the impulse are reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacastow, R. and Keeling, C. D.: 1973, ‘Atmospheric Carbon Dioxide and Radiocarbon on the Natural Carbon Cycle’, in Woodwell, G. M. and Pecan, E. V. (eds.), Carbon and the Biosphere, U.S. Atomic Energy Commission, pp. 86–135.Google Scholar
  2. Bazzaz, F. A. and Fajer, E. D.: 1992, ‘Plant Life in a CO2-Rich World’, Sci. Am. 264, 68–74.Google Scholar
  3. Boden, T. A., Sepanski, R. J., and Stoss, F. W.: 1991, ‘Trends 91: A Compendium of Data on Global Change’, Oak Ridge Natl. Lab, Oak Ridge, USA, ORNL/CDIAC-46.Google Scholar
  4. Broecker, W. S. and Peng, T. H.: 1993, ‘Evaluation of the 13C Constraint on the Uptake of Fossil Fuel CO2 by the Ocean’, Global Biogeochem. Cycles 7, 619–626.Google Scholar
  5. Carlyle, J. C. and Than, U. B.: 1988, ‘Abiotic Controls of Soil Respiration Beneath an Eighteen-Year-Old Pinus Radiate Stand in South-Eastern Australia’, J. Ecol. 76, 654–662.Google Scholar
  6. Cias, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R.'J.: 1995, ‘A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C ratio of atmospheric CO2’, Science 269, 1098–1102.Google Scholar
  7. Dai, A. and Fung, I. Y.: 1993, ‘Can Climate Variability Contribute to the “Missing” CO2 Sink?’, Global Biogeochem. Cycles 7, 599–609.Google Scholar
  8. Dixon, R. K., Brown, S. A., Houghton, R. A., Solomon, A. M., Trexler, M. C., and Wisniewski, J.: 1994, ‘Carbon Pools and Flux of Global Forest Ecosystems’, Science 263, 185–190.Google Scholar
  9. Emanuel, W. R., Killough, G. G., Post, W. M., and Shugart, H. H.: 1984, ‘Modeling Terrestrial Ecosystems in the Global Carbon Cycle with Shifts in Carbon Storage Capacity by Land-Use Change’, Ecology 65, 970–983.Google Scholar
  10. Enting, I. G. and Pearman, G. I.: 1987, ‘Description of a One-Dimensional Carbon Cycle Model Calibrated by the Techniques of Constrained Inversion’, Tellus 39B, 459–476.Google Scholar
  11. Enting, I. G., Wigley, T. M. L., and Heimann, M. (eds.): 1994, Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses, CSIRO Division of Atmospheric Research Technical Paper No. 31, CSIRO, Australia, 120 pp.Google Scholar
  12. Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., and Vera, R. R.: 1994, ‘Carbon Storage by Introduced Deep-Rooted Grasses in the South American Savannas’, Nature 371, 236–238.Google Scholar
  13. Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B.: 1986, ‘Ice Core Record of the 13C/12C Ratio of Atmospheric Carbon Dioxide in the Past Two Centuries’, Nature 324, 237–238.Google Scholar
  14. Galloway, J. N., Schlesinger, W. H., Levy II, H., Michaels, A., and Schnoor, J. L.: 1995, ‘Nitrogen Fixation: Anthropogenic Enhancement-Environmental Response’, Global Biogeochem. Cycles 9, 235–252.Google Scholar
  15. Gates, D. M.: 1985, ‘Global Biospheric Response to Increasing Atmospheric Carbon Dioxide Concentration’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation, U.S. Dept. Energy, DOE/ER-0238, Washington DC, pp. 171–184.Google Scholar
  16. Haraden, J.: 1993, ‘An Updated Shadow Price for CO2’, Energy Int. J. 18, 303–307.Google Scholar
  17. Harvey, L. D. D.: 1989a, ‘Effect of Model Structure on the Response of Terrestrial Biosphere Models to CO2 and Temperature Increases’, Global Biogeochem. Cycles 3, 137–153.Google Scholar
  18. Harvey, L. D. D.: 1989b, ‘Managing Atmospheric CO2’, Climatic Change 15, 343–381.Google Scholar
  19. Harvey, L. D. D. and Schneider, S. H.: 1985, ‘Transient Climate Response to External Forcing on 100–104 Year Time Scales, Part I. Experiments with Globally Averaged Coupled Atmosphere and Ocean Energy Balance Models’, J. Geophys. Res. 90, 2191–2205.Google Scholar
  20. Hoffert, M. I., Callegari, A. J., and Hseih, C.-T.: 1981, ‘A Box-Diffusion Carbon Cycle Model with Upwelling, Polar Bottom Water Formation and a Marine Biosphere’, in Bolin, B. (ed.), Carbon Cycle Modeling, SCOPE 16, Wiley, New York, pp. 287–305.Google Scholar
  21. Houghton, J. T. et al. (eds.): 1996, The IPCC Second Scientific Assessment Report, Cambridge University Press, Cambridge.Google Scholar
  22. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990, Climate Change, The IPCC Scientific Assessment, Cambridge University Press, Cambridge.Google Scholar
  23. Hudson, R. J. M., Gherini, S. A., and Goldstein, R. A.: 1994, ‘Modeling the Global Carbon Cycle: Nitrogen Fertilization of the Terrestrial Biosphere and the “Missing” CO2 Sink’, Global Biogeochem. Cycles 8, 307–333.Google Scholar
  24. Jain, A. K., Kheshgi, H. S., Caldeira, K., Hoffert, M. I., and Wuebbles, D. J.: 1994a, ‘Evaluation of δ13C of Atmospheric Carbon Dioxide with a Schematic Carbon Cycle Model’, Amer. Geophys. Union Fall Meeting, EOS Suppl. 75, 152–153.Google Scholar
  25. Jain, A. K., Kheshgi, H. S., and Wuebbles, D. J.: 1994b, ‘Integrated Science Model for Assessment of Climate Change’, Lawrence Livermore National Laboratory, UCRL-JC-116526.Google Scholar
  26. Jain, A. K., Kheshgi, H. S., Hoffert, M. I., and Wuebbles, D. J.: 1995a, ‘Distribution of Radiocarbon as a Test of Global Carbon Cycle Models’, Global Biogeochem. Cycles 9, 153–166.Google Scholar
  27. Jain, A. K., Wuebbles, D. J., and Kheshgi, H. S.: 1995b, ‘Can We Balance the Atmospheric Budget of Bomb-Produced Radiocarbon?’, EOS Suppl 76, S77.Google Scholar
  28. Keeling, C. D. and Whorf, T.: 1993, ‘Trends in Atmospheric CO2 Since the Eruption of Pinatubo in 1991’, in 4th Int. CO 2 Conf., World Meteorological Organization, Carquiranne, pp. 67–68.Google Scholar
  29. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H.: 1989a, ‘A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds, 1. Analysis of Observational Data’, in Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and Western Americas, Am. Geophys. Union, Washington, DC, pp. 165–236.Google Scholar
  30. Keeling, C. D., Piper, S. C., and Heimann, M.: 1989b, ‘A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds, 4. Mean Annual Gradients and Interannual Variations’, in Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and Western Americas, Am. Geophys. Union, Washington, DC, pp. 305–363.Google Scholar
  31. Kheshgi, H. S. and White, B. S.: 1995 ‘Modelling Ocean Carbon Cycle with a Nonlinear Convolution Model’, Tellus, in press.Google Scholar
  32. Kheshgi, H. S., Jain, A. K., and Wuebbles, D. J.: 1995, ‘Uncertainty in the Global Carbon Budget Derived from Isotopic Constraints’, Am. Geophys. Union Fall Meeting, EOS Suppl. 76, F83.Google Scholar
  33. Kohlmaier, G. H., Brohl, H., Sire, E. O., Piochal, M., and Revelle, R.: 1987, ‘Modelling Stimulation of Plants and Ecosystem Response to Present levels of Excess Atmospheric CO2’, Tellus 39B, 155–170.Google Scholar
  34. Leggett, J., Pepper, W. J., and Swart, R. J.: 1992, ‘Emission Scenarios for the IPCC: An Update’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, New York, pp. 69–96.Google Scholar
  35. Marowitch, J., Richter, C., and Hoddinott, J.: 1986, ‘The Influence of Plant Temperature on Photosynthesis and Translocation Rates in Bean and Soybean’, Can. J. Bot. 64, 2337–2342.Google Scholar
  36. Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climatic Change and Terrestrial Net Primary Production’, Nature 363, 234–240.Google Scholar
  37. Moore, B. and Bradswell, B. H.: 1994, ‘The Lifetime of Excess Atmospheric Carbon Dioxide’, Global Biogeochem. Cycles 8, 23–38.Google Scholar
  38. Nordhaus, W. D.: 1992, ‘An Optimal Transition Path for Controlling Greenhouse Gases’, Science 258, p. 1315.Google Scholar
  39. Owens, N. J. P., Galloway, J. N., and Duce, R. A.: 1992, ‘Episodic Atmospheric Nitrogen Deposition to Oligotrophic Oceans’, Nature 357, 397–399.Google Scholar
  40. Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J.: 1987, ‘Seasonal Variability of Carbon Dioxide, Nutrients and Oxygen in the Northern North Atlantic Surface Water’, Tellus 39B, 439–458.Google Scholar
  41. Prentice, K. C. and Fung, I. Y.: 1990, ‘The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48–51.Google Scholar
  42. Reuss, J. O. and Innis, G. S.: 1977, ‘A Grassland Nitrogen Flow Simulation Model’, Ecology 58, 379–388.Google Scholar
  43. Rotmans, J. and Den Elzen, M. G. J.: 1993, ‘Modelling Feedback Mechanisms in the Carbon Cycle: Balancing the Carbon Budget’, Tellus 45B, 301–320.Google Scholar
  44. Saltzman, B. and Verbitsky, M.: 1994, ‘CO2 and Glacial Cycles’, Nature 367, 419.Google Scholar
  45. Sarmiento, J. L. and Sundquist, E. T.: 1992, ‘Revised Budget of the Oceanic Uptake of Anthropogenic Carbon Dioxide’, Nature 356, 589–593.Google Scholar
  46. Sarmiento, J. L., Le Quéré, C., and Pacala, S. W.: 1995, ‘Limiting Future Atmospheric Carbon Dioxide’, Global Biogeochem. Cycles. 9, 121–137.Google Scholar
  47. Schimel, D., Enting, I., Heimann, M., Wigley, T., Raynaud, D., Alves, D., and Siegenthaler, U.: 1994, ‘CO2 and the Carbon Cycle’, in Houghton, J. T. et al. (eds.), Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCCIS92 Emission Scenarios, Cambridge University Press, New York, pp. 35–71.Google Scholar
  48. Schindler, D. W. and Bayley, S. E.: 1993, ‘The Biosphere as an Increasing Sink for Atmospheric Carbon: Estimates from Increasing Nitrogen Deposition’, Global Biogeochem. Cycles 7, 717–733.Google Scholar
  49. Schlesinger, W.: 1991, Biogeochemistry: An Analysis of Global Change, Academic Press, San Diego, 443 pp.Google Scholar
  50. Siegenthaler, U. and Joos, F.: 1992, ‘Use of a Simple Model for Studying Oceanic Tracer Distributions and the Global Carbon Cycle’, Tellus 44B, 186–207.Google Scholar
  51. Siegenthaler, U. and Oeschger, H.: 1978, ‘Predicting Future Atmospheric Carbon Dioxide Levels’, Science 199, 388–395.Google Scholar
  52. Siegenthaler, U. and Oeschger, H.: 1987, ‘Biospheric CO2 Emissions During the Past 200 Years Reconstructed by Deconvolution of Ice Core Data’, Tellus 39B, 140–154.Google Scholar
  53. Sundquist, E. T.: 1986, ‘Geologic Analogs: Their Value and Limitations in Carbon Dioxide Research’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle, Springer-Verlag, New York, pp. 371–402.Google Scholar
  54. Sundquist, E. T.: 1990, ‘Influence of Deep-Sea Benthic Processes on Atmospheric CO2’, Phil. Trans. Roy. Soc. A 331, 155–165.Google Scholar
  55. Tans, P. P., Berry, J. A., and Keeling, R. F.: 1993, ‘Oceanic 13C/12C Observations: A New Window on Ocean CO2 Uptake’, Global Biogeochem. Cycles 7, 353–368.Google Scholar
  56. Tans, P. P., Fung, I.Y. and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric CO2 Budget’, Science 247, 1431–1438.Google Scholar
  57. Volk, T. and Liu, Z.: 1988, ‘Controls of CO2 Sources and Sinks in the Earth Scale Surface Ocean: Temperature and Nutrients’, Global Biogeochem. Cycles 2, 73–89.Google Scholar
  58. Wigley, T. M. L.: 1993, ‘Balancing the Carbon Budget. Implications for Projections of Future Carbon Dioxide Concentration Changes’, Tellus 45B, 409–425.Google Scholar
  59. Wuebbles, D. J., Jain, A. K., Patten, K. O., and Grant, K. E.: 1995, ‘Sensitivity of Direct Global Warming Potentials to Uncertainties’, Climatic Change 29, 265–297.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Haroon S. Kheshgi
    • 1
  • Atul K. Jain
    • 2
  • Donald J. Wuebbles
    • 2
  1. 1.Corporate Research Laboratories, Exxon Research and Engineering CompanyAnnandaleU.S.A.
  2. 2.Department of Atmospheric SciencesUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations