Skip to main content
Log in

Field processes in stereovision

A description of stereopsis appropriate to ophthalmology and visual perception

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

There is, as yet, no satisfactory theory of stereopsis, despite the fact that our overt knowledge of “solid seeing” is now about 150 years old, and that contributions to our understanding come today from many fields: ophthalmology, psychology, psychophysics, neurophysiology, computer modelling, and optical-TV display technology. We review herein, and demonstrate for the reader whenever possible, certain key perceptual properties of the stereoscopic event of which any general theory must take account: vector stereoscopy and the neural grid, depth in empty visual fields, the relationship between stereoscopic and cognitive contours, stereoscopic contour formation in the presence of blur (thus, at low levels of central visual acuity), the phenomenon of cortical locking and of neural grid evocation in the presence of either peripheral or central rivalry, certain unusual ranges of figural mismatch and the concept of the horopter in relation to modern single cell electroneurophysiology in animals and to the constancy of visual directions. Some comments are also made on the concept of disparity processing by single cortical neurons, together with a short discussion of the implications of certain views of the genetics of stereovision for the perception of novel random texture sine-wave stereograms.

We conclude that any theory pertinent to ophthalmology and visual science must combine the global concepts of cortical integration, the neural lock and the neural grid, herein introduced, with the more classical concepts of particulate or local binocular cortical correspondence. Certain preliminary steps in this direction are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames A (1935) Aniseikonia - a factor in the functioning of vision. Amer J Ophthal 18: 1014–1020

    Google Scholar 

  • Ames A (1946) Binocular vision as affected by relations between uniocular stimulus patterns in commonplace environments. Amer J Psychol 59: 333–337

    Google Scholar 

  • Anstis SM (1974) A chart demonstrating variations in acuity with retinal position. Vision Res 14: 589–592

    Google Scholar 

  • Aschenbrenner CM (1954) Problems in getting information into and out of air photographs. Photogram Engng 20: 398–401

    Google Scholar 

  • Bacon JH (1976) The interaction of dichoptically presented spatial gratings. Vision Res 16: 337–344

    Google Scholar 

  • Bannon R (1942) The practical aspects of aniseikonia. Amer J. Optom 19: 239–260.

    Google Scholar 

  • Barlow HB (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1: 371–394

    Google Scholar 

  • Barlow HB (1981) Critical limiting factors in the design of the eye and visual cortex. Proc Roy Soc London B 213: 1–34

    Google Scholar 

  • Barlow HB, Blakemore C, Pettigrew JB (1967) The neural mechanism of binocular depth discrimination. J Physiol Lond 193: 372–342

    Google Scholar 

  • Bishop PO (1970) Beginning of form vision and binocular depth discrimination in cortex. In: Schmitt FO (ed) The neurosciences: second study program. Rockefeller Univ Press, NYC, pp. 471–485

    Google Scholar 

  • Bishop PO, Henry GH, Smith CJ (1971) Binocular interaction fields of single units in the cat striate cortex. J Physiol Lond 216: 39–68

    Google Scholar 

  • Blake R, Lehmkuhle SW (1976) On the site of strabismic suppression. Invest Ophthal 15: 660–663

    Google Scholar 

  • Blakemore C (1970) The range and scope of binocular depth discrimination in man. J Physiol Lond 211: 599–622

    Google Scholar 

  • Blakemore C (1970) Binocular depth perception and the optic chiasm. Vision Res 10: 43–47

    Google Scholar 

  • Blakemore C (1970) The representation of three-dimensional visual space in the cat's striate cortex. J Physiol Lond 209: 155–178

    Google Scholar 

  • Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol Lond 203: 237–260

    Google Scholar 

  • Blakemore C, Fiorentini A, Maffai L (1972) A second neural mechanism of binocular depth discrimination. J Physiol Lond 226: 725–749

    Google Scholar 

  • Blakemore C, Pettigrew JD (1970) Eye dominance in the visual cortex. Nature 225: 426–429

    Google Scholar 

  • Bradley DR, Petry HM (1977) Organizational determinants of subjective contour. Amer J Psychol 90: 253–262

    Google Scholar 

  • Brewster D (1844) Law of visible positions in single and binocular vision. Phil Mag 24: 356–439

    Google Scholar 

  • Burian HM (1951) Anomalous retinal correspondence: Its essence and its significance in diagnosis and treatment. Amer J Ophthal 34: 237–253

    Google Scholar 

  • Burns BD, Pritchard R (1968) Cortical conditions for fused binocular vision. J Physiol Lond 197: 149–171

    Google Scholar 

  • Burt P, Julesz B (1980) Modifications of the classical notion of Panum's fusional area. Perception 9: 671–682

    Google Scholar 

  • Causey G (1960) The cell of schwann. Livingston: Edinburgh

    Google Scholar 

  • Cherubin d'Orleans P (1677) La Vision parfaite: ou le concours de deux axes de la vision en un seul point de l'objet. S Mabre-Cramoisy, Paris

    Google Scholar 

  • Clarke PGH, Donaldson JML, Whitteridge D (1976) Binocular visual mechanisms in cortical areas I and II of the sheep. J Physiol Lond 256: 509–526

    Google Scholar 

  • Cantril H ed (1960) The morning notes of Adelbert Ames. Rutgers Univ Press, Rutgers, NJ

    Google Scholar 

  • Cohn TE, Lasley DJ (1976) Binocular vision: Two possible central interactions between signals from the two eyes. Science 192: 561–563

    Google Scholar 

  • Coxeter HSM (1961) Introduction to geometry. Wiley & Sons, NYC

    Google Scholar 

  • Crane RA, Hardjowioto S (1979) What is normal binocular vision? Doc Ophthal 47: 163–199

    Google Scholar 

  • Crawford MLJ, Cool SJ (1970) Binocular stimulation and response variability of striate cortex units in the cat. Vision Res 10: 1145–1153

    Google Scholar 

  • Daum KM (1982) Analysis of seven methods of determining anomalous correspondence. Amer J Optom 59: 870–877

    Google Scholar 

  • Dodwell PC, Engel GR (1963) A theory of binocular fusion. Nature 198: 39–40, 73–74

    Google Scholar 

  • Dove HW (1860) Über Stereoskopie. Annallen d Physik Ser 2 110: 494–498

    Google Scholar 

  • Edelman GM, Mountcastle VB (1978) The mindful brain. MIT Press, Cambridge, Mass

    Google Scholar 

  • Engel GR (1969) An investigation of visual responses to brief stereoscopic stimuli. Vision Res 19: 148–166

    Google Scholar 

  • Enoch J, Goldman H, Sunga R (1969) The ability to distinguish which eye was stimulated by light. Invest Ophthal 8: 317–331

    Google Scholar 

  • Felton TB, Richards W, Smith RA (1972) Disparity processing of spatial frequencies in man. J Physiol Lond 225: 340–362

    Google Scholar 

  • Fender D, Julesz B (1967) Extension of Panum's fusional area in binocularly stabilized vision. J Opt Soc Amer 57: 819–830

    Google Scholar 

  • Foley J (1976) Binocular depth mixture. Vision Res 16: 1263–1267

    Google Scholar 

  • Foley JM, Appelbaum TH, Richards WA (1975) Stereopsis with large disparities: discrimination and depth magnitude. Vision Res 15: 417–421

    Google Scholar 

  • Frisby JP, Julesz B (1975) The effect of orientation difference on stereopsis as a function of line length. Perception 4: 179–186

    Google Scholar 

  • Frisby JP, Mayhew JEW (1979) Does visual texture discrimination precede binocular fusion? Perception 8: 153–156

    Google Scholar 

  • Galton F (1883) Inquiries into human faculty and its development. Dent & Co, London (ca.1910). Esp p 226

    Google Scholar 

  • Gibson JJ (1950) The Perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1961) Ecological optics. Vision Res 1: 253–262

    Google Scholar 

  • Gilchrist AL (1977) Perceived lightness depends on perceived arrangement. Science 195 (4274): 185–187

    Google Scholar 

  • Gilinsky A (1968) Orientation-specific effects of patterns of adapting light on visual acuity. J Opt Soc Amer 58: 13–18

    Google Scholar 

  • Gillott HF (1956) The effect on binocular vision of variations in the relative sizes and levels of illumination of the ocular images. Brit J Physiol Optics 13: 122–146

    Google Scholar 

  • Gogel WC (1965) The equidistance tendency and its consequences. Psychol Bull 64: 153–163

    Google Scholar 

  • Griffin JR (1982) Binocular anomalies: Procedures for vision therapy. Professional Press, Chicago, 111

    Google Scholar 

  • Grimson WEL (1982) A computational theory of visual surface interpolation. Phil Trans Roy Soc Lond B 298: 395–427

    Google Scholar 

  • Hoekstra J, van der Groot DPJ, van den Brink G, Bilsen FA (1974) The influence of the number of cycles upon the visual contrast threshold for spatial sinewave patterns. Vision Res 14: 365–368

    Google Scholar 

  • Holmes OW (1859) The stereoscope and the stereograph. Atlantic Monthly June: 738

  • Hubel DH, Wiesel TN (1970) Cells sensitive to binocular depth in area 18 of the macaque montrey cortex. Nature 225: 41–42

    Google Scholar 

  • Hubel DH, Wiesel TN (1974) Sequence resularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158: 267–293

    Google Scholar 

  • Hyson MT, Julesz B, Fender DH (1983) Eye movements and neural remapping during fusion of misaligned random-dot stereograms. J Opt Soc Amer 73: 1665–1673

    Google Scholar 

  • Ittelson WH (1952) The Ames demonstrations in perception. Princeton University Press, Princeton, NJ, Fig 14, 3, p 54

    Google Scholar 

  • Jennings JAM (1985) Anomalous retinal correspondence - a review. Ophthal Physiol Opt 5: 357–368

    Google Scholar 

  • Joshua DE, Bishop PO (1970) Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp Brain Res 10: 389–416

    Google Scholar 

  • Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell System Tech J XXXIX: 1125–1161

    Google Scholar 

  • Julesz B (1964) Texture and visual perception. Sci Amer 212: 38–48

    Google Scholar 

  • Julesz B (1964) Binocular depth perception without familiarity cues. Science 145: 356–362

    Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. Univ Chicago Press, Chicago

    Google Scholar 

  • Julesz B (1975) Global Stereopsis. In: Held R, Leibowitz H, Teuber HL (eds) Handbook of sensory physiology. III. Perception. Springer, Berlin

    Google Scholar 

  • Julesz B, Chang JJ (1976) Interaction between pools of binocular disparity detectors tuned to different disparities. Biol Cybern 22: 107–119

    Google Scholar 

  • Julesz J, Frisby JF (1975) Some new subjective contours in randomline stereograms. Perception 4: 145–150

    Google Scholar 

  • Julesz B, Miller JE (1975) Independent spatial-frequency-tuned channels in binocular fusion and rivalry. Perception 4: 125–143

    Google Scholar 

  • Kanizsa G (1974) Contours without gradients or cognitive contours? G Ital de Psicol 1: 93–112

    Google Scholar 

  • Kaufman L (1963) On the spread of suppression and binocular rivalry. Vision Res 3: 401–415

    Google Scholar 

  • Kaufman L (1976) The fusion illusion. Vision Res 16: 535–543

    Google Scholar 

  • Kaufman L (1964) On the nature of binocular disparity. Amer J Psychol 77: 393–402

    Google Scholar 

  • Kertesz AE, Jones RW (1970) Human cyclofusional response. Vision Res 10: 891–897

    Google Scholar 

  • Kelly D, Magnuski HS (1975) Pattern detection and the two-dimensional fourier transform: circular targets. Vision Res 15: 911–915

    Google Scholar 

  • Kilpatrick FP (1952) Human behavior from the transactional point of view. ONR Contract Report #496(01). Bureau of Medicine & Surgery, Dept of the Navy

  • Köhler W, Emery D (1947) Figural after-effects in the third dimension of visual space. Amer J Psychol 40: 159–201

    Google Scholar 

  • Lancaster WB (1943) Terminology in ocular motility and allied subjects. Amer J Ophthal 26: 122–132

    Google Scholar 

  • Lawson RB, Gulick WL (1967) Stereopsis and anomalous contour. Vision Res 7: 271–297

    Google Scholar 

  • Levinson E, Blake R (1979) Stereopsis by harmonic analysis. Vision Res 19: 115–121

    Google Scholar 

  • Linksz A (1952) Physiology of the eye. Vol. II. Vision. Grune & Stratton, NYC

    Google Scholar 

  • Luneberg R (1947) Mathematical analysis of binocular vision. Princeton Univ Press, Princeton, NJ

    Google Scholar 

  • Ludvigh E, McKinnon P, Zaitzeff L (1965) Relative effectivity of foveal and parafoveal stimuli in eliciting fusion movements. Arch Ophthal 73: 115–121

    Google Scholar 

  • Marlowe LH (1969) Orientation of contours and binocular depth perception. PhD Thesis. Brown University, Providence, RI

    Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  • Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc Roy Soc Lond B 204: 301–328

    Google Scholar 

  • Mayhew JEW, Frisby JP (1976) Rivalrous texture streograms. Nature 246: 53–56

    Google Scholar 

  • Mayhew JEW, Frisby JP (1978) Contrast summation effects and stereopsis. Perception 7: 537–550

    Google Scholar 

  • Mayhew JEW, Frisby JP (1979) Surfaces with steep variations in depth pose difficulties for orientationally tuned disparity filters. Perception 8: 691–698

    Google Scholar 

  • Maunsell JH, van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol 49: 1148–1167

    Google Scholar 

  • Mitchell DE, Blakemore C (1970) Binocular depth perception and the corpus callosum. Vision Res 10: 49–54

    Google Scholar 

  • Nelson JI (1975) Globality and stereoscopic fusion in binocular vision. J Theor Biol 49: 1–88

    Google Scholar 

  • Nelson JI (1977) Plasticity of correspondence. After effects, illusions and horopter shifts in depth perception. J Theor Biol 66: 203–266

    Google Scholar 

  • Nelson JI (1981) A neurophysiological model for anomalous correspondence based on mechanisms of sensory fusion. Doc Ophthal 51: 3–99

    Google Scholar 

  • Nelson JI, Kato H, Bishop PO (1977) Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex. J Neurophysiol 40: 260–283

    Google Scholar 

  • Nikara T, Bishop PO, Pettigrew JD (1968) Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exper Brain Res 6: 353–372

    Google Scholar 

  • Newell F ed. (1975) Strabismus and amblyopia. Public Sciences Group, Acton, Mass

    Google Scholar 

  • Ninio J (1977) The geometry of the correspondence between two retinal projections. Perception 6: 627–643

    Google Scholar 

  • Ninio J (1985) Oriental versus horizontal disparity in the stereoscopic appreciation of slant. Perception 14: 305–314

    Google Scholar 

  • Ogle KN (1964) Researches in binocular vision. Hafner, NYC

    Google Scholar 

  • Palmer CH (1962) Optics: Experiments and demonstrations. John Hopkins Press. Baltimore (Fig. A18–9), p 103, “Courtesy of Westinghouse Air Arm Divison”

    Google Scholar 

  • Pantle D, Sekuler R (1968) Size-detecting mechanisms in human vision. Science 162: 1146–1148

    Google Scholar 

  • Petermann B (1932) The Gestalt theory and the problem of configuration. Routledge & Kegan Paul, London (- 1950 - Trans M Fortes)

    Google Scholar 

  • Pettigrew JD (1972) The neurophysiology of binocular vision. Sci Amer 227: 84–95

    Google Scholar 

  • Pettigrew JD (1973) Binocular neurones which signal change of disparity in area 18 of cat visual cortex. Nature 241: 123–124

    Google Scholar 

  • Pettigrew JD (1979) Binocular visual processing in the owl's telencephalon. Proc Roy Soc Lond B 204: 435–454

    Google Scholar 

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate of behaving rhesus monkey. J Neurophysiol 40: 1392–1405

    Google Scholar 

  • Polyak S (1957) The vertebrate visual system. Univ Chicago Press, Chicago

    Google Scholar 

  • Prasdny K (1985) On the nature of inducing forms generating perceptions of illusory contours. Percept & Psychophys 37: 237–242

    Google Scholar 

  • Ramachandran VS, Nelson JI (1976) Global grouping overrides point-to-point disparities. Perception 5: 125–128

    Google Scholar 

  • Ramachandran VS, Clarke PG, Whitteridge D (1977) Cells selective to binocular disparity in the cortex of newborn lambs. Nature 268: 333–335

    Google Scholar 

  • Rawlings SC, Shipley T (1969) Stereoscopic acuity and horizontal angular distance from fixation. J Opt Soc Amer 59: 991–993

    Google Scholar 

  • Regan D, Beverley KI (1973) Disparity detectors in human depth perception: evidence for directional sensitivity. Science 181: 877–879

    Google Scholar 

  • Richards W (1970) Stereopsis and stereoblindness. Exper Brain Res 10: 380–388

    Google Scholar 

  • Richards W (1971) Anomalous stereoscopic depth perception. J Opt Soc Amer 61: 410–414

    Google Scholar 

  • Richards WA, Foley JM (1971) Interhemispheric processing of binocular disparity. J Opt Soc Amer 61: 419–421

    Google Scholar 

  • Richards W, Kaye MG (1974) Local vs global stereopsis: Two mechanisms? Vision Res 14: 1345–1347

    Google Scholar 

  • Rosar WH (1985) Visual space as physical geometry. Perception 14: 403–425

    Google Scholar 

  • Rosch J (1943) Mesures stereoscopiques appliquées à l'astronomie et recherches connexes d'optique physiologique. Hermann & Cie, Paris (esp Fig 3, PI.-II)

    Google Scholar 

  • Ross J (1974) Stereopsis by binocular delay. Nature 284: 363–364

    Google Scholar 

  • Ross J, Hogben JH (1974) Short-term memory in stereopsis. Vision Res 14: 1195–1290

    Google Scholar 

  • Schumar R, Ganz L (1979) Independent stereoscopic channels for different extents of opatial pooling. Vision Res 19: 1303–1314

    Google Scholar 

  • Shipley T (1957) Convergence function in binocular vision. I. A note on theory. J Opt Soc Amer 47: 795–803. II. Experimental report. J Opt Soc Amer 47: 804–821

    Google Scholar 

  • Shipley T (1961) An experimental study of the frontal reference curves of binocular visual space. Doc Ophthal XV: 3231–350

    Google Scholar 

  • Shipley T (1965) Visual contours in homogeneous visual space. Science 150: 348–350

    Google Scholar 

  • Shipley T (1969) The visually evoked occipitogram in strabismic amblyopia under direct-view ophthalmoscopy. J Pediatric Ophthal 6: 97–112

    Google Scholar 

  • Shipley T (1971) The first random dot texture stereogram. Vision Res 11: 1491–1492

    Google Scholar 

  • Shipley T (1973) The stereoscopic pattern signal: gestalt processes in the binocular field. Pattern Recogn 5: 109–120

    Google Scholar 

  • Shipley T (1987a) The sensory foundations of mental life. At the press

  • Shipley T (1987b) Unifying principles of higher cortical function. In prep

  • Shipley T, Garfinkel R, van Houten P (1984) Interhemispherical comparisons between contour and random texture sine-wave stereograms. Doc Ophthal 58: 269–305

    Google Scholar 

  • Shipley T, Hyson M (1972) The stereoscopic sense of order; a classification of stereograms. Amer J Optom 49: 83–95

    Google Scholar 

  • Shipley T, Popp M (1972) Stereoscopic acuity and retinal eccentricity. Ophthal Res 3: 251–255

    Google Scholar 

  • Shipley T, Rawlings SC (1970) The nonius horopter. I. History and theory. Vision Res 10: 1225–1262. II. An experimental report. Vision Res 10: 1263–1299

    Google Scholar 

  • Shipley T, Williams D (1968) The relationship between retinal disparity and relative visual distance. Vision Res 8: 325–332

    Google Scholar 

  • Shore H (1985) Complementary spatial locations, width, and disparity. J Theoret Biol 113: 673–702

    Google Scholar 

  • Spillmann L, Woolen BR (1984) Sensory experience, adaptation and perception. Erlbaum Assoc, Hillsdale, NJ

    Google Scholar 

  • Tschermak-Seysenegg Av (1952) Introduction to physiological optics. Thomas, Springfield, I11

    Google Scholar 

  • Tschermak A (1899) Über anomale Sehrichtungs-gemeinschaft der Netzhäute bei einem Schielenden. v Graefes Arch Ophthal 47: 508–550

    Google Scholar 

  • Tyler C (1974) Depth perception in disparity gratings. Nature 251: 140–142

    Google Scholar 

  • Uttal WR (1985) The detection of nonplanar surfaces in visual space. Erlbaum Assoc, Hillsdale, NJ

    Google Scholar 

  • von der Heydt, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuronresponses. Science 224: 1260–1262.

    Google Scholar 

  • von Noorden GK (1970) Etiology and pathogenesis of fixation anomalies in strabismus. Amer J Ophthal 69: 210–245

    Google Scholar 

  • von Noorden GK (1983) Atlas of strabismus. Mosby, St. Louis

    Google Scholar 

  • Wallach H, Bacon J (1976) Two forms of retinal disparity. Perception & Psychophysics 19: 375–382

    Google Scholar 

  • Walls G (1942) The vertebrate eye and its adaptive radiations. Cranbrook Insti of Science Press, Bloomfield Hills, Mich

    Google Scholar 

  • Werner H (1937) Dynamics in binocular depth perception. Psychol Monog 49: (218): 1–129

    Google Scholar 

  • Wheatstone C (1838) Contributions to the physiology of vision. Phil Trans Royal Soc London Pt. 1, 128: 371–394

    Google Scholar 

  • Whitteridge D (1977) The cortical contribution to binocular vision. Trans Ophthal UK 97: 39–47

    Google Scholar 

  • Woolridge DE (1979) Sensory processing in the brain: an exercise in neuroconnective modeling. Wiley, NYC

    Google Scholar 

  • Zeki SM (1974) Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J Physiol 242: 827–841

    Google Scholar 

  • Zeki SM (1979) Functional specialization and binocular interaction in the visual areas of the rhesus monkey striate cortex. Proc Roy Soc Lond B 204: 379–397

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shipley, T. Field processes in stereovision. Doc Ophthalmol 66, 95–170 (1987). https://doi.org/10.1007/BF00140453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140453

Key words

Navigation