Skip to main content
Log in

Cloning of a phospholipase C-δ1 of rabbit skeletal muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The phospholipase C isoform responsible for the increase in the total myoplasmic inositol 1,4,5-trisphosphate concentration during tetanic contraction of isolated skeletal muscle and its mechanism of activation is not known. We have cloned and sequenced a phospholipase C cDNA of rabbit skeletal muscle coding for a protein of 745 amino acids with a molecular mass of 84 440 kDa. The deduced amino acid sequence exhibits the phospholipase C-specific domains X and Y which according to current knowledge very likely represent the catalytic centre of the enzyme. An overall sequence homology of 88% to the phospholipase C-δ1 of rat brain suggests that the encoded protein represents a phospholipase C-δ1 isoform of rabbit skeletal muscle. Northern blot analysis shows, that this phospholipase C-δ is dominantly expressed in skeletal muscle, less strongly in smooth muscle (uterus) and lung and weakly in heart, kidney and brain. In the N-terminal part of the primary structure a consensus sequence for a canonical EF-hand Ca2+ binding domain can be identified together with a short positively charged motif which recently has been suggested to be essential for the binding of phosphatidylinositol 4,5-bisphosphate. If these two domains which are unique for phospholipase C-δ are sufficient in establishing a mechanism for the activation of the enzyme, inositol 1,4,5-trisphosphate formation in skeletal muscle could be the consequence of an increase in myoplasmic Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BAIROCHA. & COXJ. A. (1990) EF-hand motifs in inositol phospholipid-specific phospholipase C. FEBS Lett. 269, 454–6.

    Google Scholar 

  • BERRIDGEM. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–25.

    Google Scholar 

  • BLOOMQUISTB. T., SHORTRIDGER. D., SCHNEUWLYS., PERDEWM., MONTELLC., STELLERH., RUBING. & PAKW. L. (1988) Isolation of a putative phospholipase C gene of drosophila, norpA, and its role in phototransduction. Cell 54, 723–33.

    Google Scholar 

  • BURGOYNER. D. (1994) Phosphoinositides in vesicular traffic. TIBS 19, 54–5.

    Google Scholar 

  • CARRASCOM. A., SIERRALTAJ. & HIDALGOC. (1993) Phospholipase C activity in membranes and a soluble fraction isolated from frog skeletal muscle. Biochim. Biophys. Acta 1152, 44–8.

    Google Scholar 

  • CHOMCZYNSKIP. & SACCHIN. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Analyt. Biochem. 162, 156–9.

    Google Scholar 

  • CIFUENTESM. E., DELANEYT. & REBECCHIM. J. (1994) D-myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-delta 1 to bilayer membranes. J. Biol. Chem. 269, 1945–8.

    Google Scholar 

  • COCKCROFTS. & THOMASG. M. H. (1992) Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem. J. 288, 1–14.

    Google Scholar 

  • DRAYERA. L. & VANHAASTERTP. J. M. (1992) Molecular cloning and expression of a phosphoinositide-specific phospholipase C of Dictyostelium discoideum. J. Biol. Chem. 267, 18387–92.

    Google Scholar 

  • DURUSSELI., LUAN-RILLIETY., PETROVAT., TAKAGIT. & COXJ. A. (1993) Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-binding protein: calcium-induced homo- and heterodimerization. Biochem. 32, 2394–400.

    Google Scholar 

  • EMORIY., HOMMAY., SORIMACHIH., KAWASAKIH., NAKANISHIO., SUZUKIK. & TAKENAWAT. (1989) A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolizing activity. J. Biol. Chem. 264, 21885–90.

    Google Scholar 

  • HANNONJ. D., LEEN. K.-M., YANDONGC. & BLINKSJ. R. (1992) Inositol trisphosphate (InsP3) causes contraction in skeletal muscle only under artificial conditions: evidence that Ca2+ release can result from depolarization of T-tubules. J. Muscle Res. Cell Motil. 13, 447–56.

    Google Scholar 

  • HARLANJ. E., HAJDUKP. J., YOONH. S. & FESIKS. W. (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–70.

    Google Scholar 

  • JAIMOVICHE. (1991) Chemical transmission at the triad: InsP3? J. Muscle Res. Cell Motil. 12, 316–20.

    Google Scholar 

  • KOZAKM. (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–48.

    Google Scholar 

  • KRETSINGERR. H., TOLBERTD., NAKAYAMAS. & PEARSONW. (1991). The EF-hand, homologs and analogs. In: Novel Calcium-Binding Proteins (edited by HEIZMANNC. W.) pp. 17–37. Heidelberg: Springer Verlag.

    Google Scholar 

  • MAYRG. & THIELECZEKR. (1991) Masses of inositol phosphates in resting and tetanically stimulated vertebrate skeletal muscles. Biochem. J. 280, 631–40.

    Google Scholar 

  • MELDRUME., KRIZR. W., TOTTYN. & PARKERP. J. (1991) A second gene product of the inositolphóspholipid-specific phospholipase Cδ subclass. Eur. J. Biochem. 196, 159–65.

    Google Scholar 

  • MILTINGH., HEILMEYERL. M. G.Jr. & THIELECZEKR. (1994) Phosphoinositides in membranes that build up the triads of rabbit skeletal muscle. FEBS Lett. 345, 211–18.

    Google Scholar 

  • MUSACCIOA., GIBSONT., RICEP., THOMPSONJ. & SARASTEM. (1993) The PH domain: a common piece in the structural pathchwork of signalling proteins. TIBS 18, 343–8.

    Google Scholar 

  • PAYNEW. E. & FITZGERALD-HAYESM. (1993) A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol. Cell. Biol. 13, 4351–64.

    Google Scholar 

  • PENNERR., NEHERE., TAKESHIMAH., NISHIMURAS. & NUMAS. (1989) Functional expression of the calcium release channel from skeletal muscle ryanodine receptor cDNA. FEBs Lett. 259, 217–21.

    Google Scholar 

  • RHEES. G. & CHOIK. D. (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J. Biol. Chem. 267, 12393–6.

    Google Scholar 

  • SAMBROOKJ., FRITSCHE. F. & MANIATIST. (1989) Molecular Cloning (Vol. 1–3). Cold Spring Harbor: Laboratory Press.

    Google Scholar 

  • SHAWG. S., HODGESR. S. & SYKESB. D. (1990) Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science 249, 280–3.

    Google Scholar 

  • SUX., CHENF. & HOKINL. E. (1994) Cloning and expression of a novel, highly truncated phosphoinositid-specific phospholipase C cDNA from embryos of the brine shrimp, Artemia. J. Biol. Chem. 269, 12925–31.

    Google Scholar 

  • SUHP.-G., RYUS. H., MOONK. H., SUHH. W. & RHEES. G. (1988a) Cloning and sequence of multiple forms of phospholipase C. Cell 54, 161–9.

    Google Scholar 

  • SUHP.-G., RYUS. H., MOONK. H., SUHH. W. & RHEES. G. (1988b) Inositol phospholipid-specific phospholipase C: complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc. Natl Acad. Sci. USA 85, 5419–23.

    Google Scholar 

  • THIELECZEKR., MAYRG. W. & BRANDTN. R. (1989) Inositol polyphosphate-mediated repartitioning of aldolase in skeletal muscle triads and myofibrils. J. Biol. Chem. 264, 7349–56.

    Google Scholar 

  • VARSÁNYIM., MESSERM. & BRANDTN. R. (1989) Intracellular localization of inositol-phospholipid-metabolizing enzymes in rabbit fast-twitch skeletal muscle. Eur. J. Biochem. 179, 473–9.

    Google Scholar 

  • YAGISAWAH., HIRATAM., KANEMATSUT., WATANABEY., OZAKIS., SAKUMAK., TANAKAH., YABUTAN., KAMATAH., HIRATAH. & NOJIMAH. (1994) Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1. J. Biol. Chem. 269, 20179–88.

    Google Scholar 

  • YOKO-OT., MATSUIY., YAGISAWAH., NOJIMAH. & UNOI. (1993) The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc. Natl Acad. Sci. USA 90, 1804–8.

    Google Scholar 

  • YUF.-X., SUNH.-Q., JANMEYP. A. & YINH. L. (1992) Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J. Biol. Chem. 267, 14616–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milting, H., Heilmeyer, L.M.G. & Thieleczek, R. Cloning of a phospholipase C-δ1 of rabbit skeletal muscle. J Muscle Res Cell Motil 17, 79–84 (1996). https://doi.org/10.1007/BF00140326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140326

Keywords

Navigation